

INSTRUCTION MANUAL

3169-20/21

CLAMP ON POWER HITESTER

HIOKI E.E. CORPORATION

Contents

	Stan Safe	duction dard Accessories and Options ty Notes ge Notes	1 4
1	Ove	erview	13
	1.1	Product Overview	13
	1.2	Features	14
2	Part	ts Names	17
	2.1	Instrument Labels and Functions	18
	2.2	Screen Names and Display Elements	22
		2.2.1 Screen Configuration	
		2.2.2 Common Display	
		2.2.3 On-Screen Indicators	24
3	Mea	surement Preparations	25
	3.1	Connection Procedure	25
	3.2	Connecting the Power Cord	26
	3.3	Connecting the Voltage Cords	27
	3.4	Using a Clamp-On Sensor (Option)	29
		3.4.1 Clamp-On Sensor Specifications	
		3.4.2 Connecting a Clamp-on Sensor	
	3.5	Turning the Power On/Off	33

4 Connecting to Lines to be Measured

4.1	Connection Procedure	35
4.2	Connection Methods	36
	4.2.1 Displaying the Wiring Diagram	36
	4.2.2 Basic Wiring for Single-Circuit Measurement	39
	4.2.3 Wiring for Multiple-Circuit Measurement	45
	4.2.4 Connection to a Line to Be Measured	48
	4.2.5 Checking the Wiring	49
4.3	Measurement Range	53

5 Setting Procedure

55

5.1	Settir	ng Screen	55
5.2	Settir	ng on the Measurement Setting Screen	
		SUREMENT)	56
	5.2.1	Setting the Wiring Method	57
	5.2.2	Setting the Synchronization Method	59
	5.2.3	Setting the Reactive-Power-Meter Method	60
	5.2.4	Setting the Display Average Times	62
	5.2.5	Setting the Voltage Range	63
	5.2.6	Setting the VT Ratio (PT Ratio)	64
	5.2.7	Setting the Current Range	65
	5.2.8	Setting the CT Ratio	66
	5.2.9	Setting the Clamp-On Sensor	67
5.3	Settir	ng on the Data Output Setting Screen	
	(DAT	A OUTPUT)	68
	5.3.1	Setting the Time-Series Measurement Start	
		Method	
	5.3.2	Setting Time-Series Measurement Stop Metho	
	5.3.3	Setting Interval	74
	5.3.4	Setting Medium for Saving Data	75
	5.3.5	Setting the Data File Name	76
	5.3.6	Setting Device to Be Connected to the RS-232	2C
			77

	5.3.7	Setting the Medium to which the Screen is to be Copied	
5.4		ng on the Save/Print Items Setting Screen E, PRINT ITEMS)	79
	5.4.1	Checking the number of output data items and Storable Time	.79
	5.4.2	Setting Normal Measurement-Data Output Item	
	5.4.3	Setting Integrated power and Demand	
		Measurement-data Output Items	.81
	5.4.4	Setting Harmonic Measurement-data Output Iter	ns
			.82
5.5	Settir	ng on the System Setting Screen	85
	5.5.1	Setting the THD Calculation Method	.86
	5.5.2	Setting the Harmonic Order for Display	.87
	5.5.3	Setting the RS-232C	.88
	5.5.4	Setting the LCD Backlight	.89
	5.5.5	Setting the Beep Sound	.90
	5.5.6	Setting the ID No	.91
	5.5.7	Setting the Clock	.92
	5.5.8	Setting the Language	
	5.5.9	Displaying the Serial No. and Version	

6 Measurement Method

95

6.1	Measuring the Voltage, Current, and Power (Instantaneous Values)95
6.2	Measuring the Power of Each Phase
	(Instantaneous values)97
6.3	Displaying a Waveform98
6.4	Measuring the Average, Maximum, and Minimum
	Values
	6.4.1 Displaying the Voltage, Current, and Power
	(Average, Maximum, and Minimum Values)101
	6.4.2 Displaying the Average, Maximum, and Minimum
	Power Measurements of Each Phase102
6.5	Measuring Integrated power 103

6.6	Performing Demand Measurement 104
6.7	Measuring Harmonic 105
	6.7.1 Displaying a Harmonic List105
	6.7.2 Displaying a Harmonic Graph108
6.8	Displaying on a Zoom Screen 113
6.9	Holding Displayed Measurement Data 114

7 Loading and Saving Settings and Measured Data 115

	7.1	Types of Files	115
	7.2	Using a PC Card	117
		7.2.1 Selecting a PC Card	117
		7.2.2 Inserting and Removing the PC Card	118
	7.3	File Operation	119
		7.3.1 Initializing (Formatting) the Internal Memory	,120
		7.3.2 Initializing (Formatting) the PC Card	121
		7.3.3 Saving a Setting File	122
		7.3.4 Loading a Setting File	124
		7.3.5 Deleting a File	126
		7.3.6 Copying a File in the Internal Memory to a Po	C Card 128
	7.4	Saving Measurement Data	129
		7.4.1 Automatic Storage of Measurement Data	129
		7.4.2 Saving Measurement Data Manually	133
	7.5	Copying Screen	135
8	Usir	ng a Printer	137
	8.1	Connecting the Printer	138
	8.2	Setting the Printer	
	512	8.2.1 Setting the Device to Be Connected to the	
		RS-232C	140
		8.2.2 Setting the RS-232C	

	8.3	Automatic Output of Measurement Data to th Printer	
	8.4	Copying a Screen to the Printer	
9	Usin	g the Instrument with a Computer	145
	9.1 9.2	RS-232C Connection Setting the RS-232C	
10	Usin	g the External Input/Output Terminal	151
	10.1	Connecting the External Input/Output Termin	
	10.2	Functions of the External Input/Output Termir	nal
	10.3	Controlling Multiple Units of the 3169-20/21	
11	Usin	g D/A Output (3169-21 only)	157
	11.1	Connecting the D/A Output Terminal	
	11.2	Setting D/A Output 11.2.1 Setting D/A Output Items 11.2.2 Setting the Integrated Power Output Rate	159
	11.2 11.3 11.4	11.2.1 Setting D/A Output Items	159 161 . 162
12	11.3 11.4	11.2.1 Setting D/A Output Items 11.2.2 Setting the Integrated Power Output Rate Response of Output	159 161 . 162
	11.3 11.4 Ope	11.2.1 Setting D/A Output Items 11.2.2 Setting the Integrated Power Output Rate Response of Output Output Waveform	159 161 . 162 . 164

14 Maintenance and Service

Cleaning and Storage	189
Repair and Servicing	190
Instrument Disposal	192
	Repair and Servicing

Appendix

195

thod and
195
197
201
203
207

Thank you for purchasing the HIOKI "3169-20/21 CLAMP ON POWER HITESTER". To obtain maximum performance from the product, please read this manual first, and keep it handy for future reference.

- Refer to the Quick Start Manual provided with this device.
- For current input with this device, a clamp-on sensor (optional) is required. For details, refer to the instruction manual for the clamp-on sensor you are using.

Standard Accessories and Options

Checking the contents of the package

When you receive the product, inspect it carefully to ensure that no damage occurred during shipping. In particular, check the accessories, panel switches, and connectors. If damage is evident, or if it fails to operate according to the specifications, contact your dealer or Hioki representative.

CLAMP ON POWER

3169-20/21

HITESTER

Quick Start Manual

Instruction Manual

- Instruction Manual
- RS-232C Instruction Manual
- CSV Conversion Software (CD-R)

Input Cord Label

Power Cord

9438-03 VOLTAGE CORD 1 set (4 cords) (One each red, yellow, blue, and black cords.)

9441 CONNECTION CABLE (for D/A output, 3169-21 only)

Options	
Clamps	 Voltage output type: 9660 CLAMP ON SENSOR (100 A rms rating) 9661 CLAMP ON SENSOR (500 A rms rating) 9667 FLEXIBLE CLAMP ON SENSOR (5000 A rms rating) 9669 CLAMP ON SENSOR (1000 A rms rating) 9694 CLAMP ON SENSOR (5 Arms rating) 9695-02 CLAMP ON SENSOR (50 Arms rating) 9695-03 CLAMP ON SENSOR (100 Arms rating) 9290 CLAMP ON ADAPTER (continuous 1000 A, up to 1500 A, CT ratio 10:1) 9219 CONNECTION CABLE (for 9695-02/03)
Interface	 9440 CONNECTION CABLE (for external input/output terminal) 9441 CONNECTION CABLE (for D/A output, 3169-21 only) 9612 RS-232C CABLE (for PC)
Printers	 9442 PRINTER (with 1 roll of thermally sensitized paper supplied, with battery pack) 9443-01 AC ADAPTER (for printers) for Japan 9443-02 AC ADAPTER (for printers) for EU 9443-03 AC ADAPTER (for printers) for USA 1196 RECORDING PAPER (25 m, 10 rolls)
Transport case	 9720-01 CARRYING CASE (The voltage cables and clamp-on sensor are also housed in the case.) (9720 CARRYING CASE)
Other peripherals	 9626 PC Card 32 MB (32 MB compact Flash card + adapter) 9627 PC Card 64 MB (64 MB compact Flash card + adapter) 9726 PC Card 128 MB (128 MB compact Flash card + adapter) 9727 PC Card 256 MB (256 MB compact Flash card + adapter) 9728 PC Card 512 MB (512 MB compact Flash card + adapter)
Software	9625 POWER MEASUREMENT SUPPORT SOFTWARE

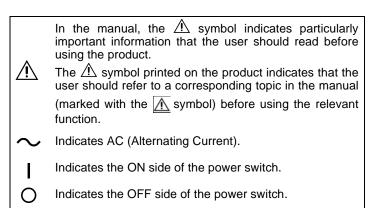
Software • 9625 POWER MEASUREMENT SUPPORT SOFTWARE (PC application software)

Before using the 3169-20/21

- Before using the product the first time, verify that it operates normally to ensure that the no damage occurred during storage or shipping. If you find any damage, contact your dealer or Hioki representative.
- Before using the product, make sure that the insulation on the 9438-03 VOLTAGE CORD is undamaged and that no bare conductors are improperly exposed. Using the product in such conditions could cause an electric shock, so contact your dealer or Hioki representative for repair.

Shipping precautions

Use the original packing materials when reshipping the product, if possible.



A DANGER

This product is designed to conform to IEC 61010 Safety Standards, and has been thoroughly tested for safety prior to shipment. However, mishandling during use could result in injury or death, as well as damage to the product. Be certain that you understand the instructions and precautions in the manual before use. We disclaim any responsibility for accidents or injuries not resulting directly from product defects.

Safety Symbols

This manual contains information and warnings essential for safe operation of the product and for maintaining it in safe operating condition. Before using the product, be sure to carefully read the following safety notes.

The following symbols in this manual indicate the relative importance of cautions and warnings.

A DANGER	Indicates that incorrect operation presents an extreme hazard that could result in serious injury or death to the user.
<u> AWARNING</u>	Indicates that incorrect operation presents a signifi- cant hazard that could result in serious injury or death to the user.
A CAUTION	Indicates that incorrect operation presents a possi- bility of injury to the user or damage to the product.
NOTE	Advisory items related to performance or correct operation of the product.

Other Symbols

\bigcirc	Indicates the prohibited action.
*	Indicates the reference.
@ >	Indicates quick references for operation and reme- dies for troubleshooting.
*	Indicates terminology explained at the bottom of the page.

Accuracy

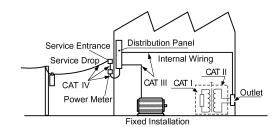
We define measurement tolerances in terms of f.s. (full scale), rdg. (reading) and dgt. (digit) values, with the following meanings:

f.s. (maximum display value or scale length) The maximum displayable value or the full length of the scale. This is usually the maximum value of the currently selected range.

rdg. (reading or displayed value)

The value currently being measured and indicated on the measuring product.

dgt. (resolution)


The smallest displayable unit on a digital measuring product, i.e., the input value that causes the digital display to show a "1".

Measurement categories (Overvoltage categories)

This product conforms to the safety requirements for CAT III measurement products.

To ensure safe operation of measurement products, IEC 61010 establishes safety standards for various electrical environments, categorized as CAT I to CAT IV, and called measurement categories. These are defined as follows.

- CAT I Secondary electrical circuits connected to an AC electrical outlet through a transformer or similar device.
- CAT II Primary electrical circuits in equipment connected to an AC electrical outlet by a power cord (portable tools, household appliances, etc.)
- CAT III Primary electrical circuits of heavy equipment (fixed installations) connected directly to the distribution panel, and feeders from the distribution panel to outlets.
- CAT IV The circuit from the service drop to the service entrance, and to the power meter and primary overcurrent protection device (distribution panel).

Higher-numbered categories correspond to electrical environments with greater momentary energy, so a measurement product designed for CAT III environments can endure greater momentary energy than one designed for CAT II. Using a measurement product in an environment designated with a higher-numbered category than that for which the product is rated could result in a severe accident, and must be carefully avoided.

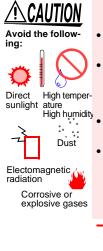
Never use a CAT I measuring product in CAT II, III, or IV environments.

The measurement categories comply with the Overvoltage Categories of the IEC60664 Standards.

Usage Notes

Follow these precautions to ensure safe operation and to obtain the full benefits of the various functions.

Do not touch with bare hands.



Check the voltage. Check the voltage. AC 100 V to 240 V

To avoid electric shock

- Do not allow the product to get wet, and do not use it when your hands are wet.
- When measuring live lines, wear appropriate protective gear, such as insulated rubber gloves, boots and a safety helmet.
- Before turning the product on, make sure the source voltage matches that indicated on the product's power connector. Connection to an improper supply voltage may damage the product and present an electrical hazard.
- To avoid electric shock and ensure safe operation, connect the power cable to a grounded (3-contact) outlet.
- Do not use the product where it may be exposed to corrosive or combustible gases. The product may be damaged or cause an explosion.

Setting up the 3169-20/21

- This product is designed for indoor use, and operates reliably from 0°C to 40°C.
- Do not store or use the product where it could be exposed to direct sunlight, high temperature or humidity, or condensation. Under such conditions, the product may be damaged and insulation may deteriorate so that it no longer meets specifications.
- This product is not designed to be entirely water- or dust-proof. To avoid damage, do not use it in a wet or dusty environment.
- Do not use the product near a device that generates a strong electromagnetic field or electrostatic charge, as these may cause erroneous measurements.

Handling this device

- To avoid damage to the product, protect it from vibration or shock during transport and handling, and be especially careful to avoid dropping.
- Be careful to avoid dropping the clamps or otherwise subjecting them to mechanical shock, which could damage the mating surfaces of the core and adversely affect measurement.

Using the clamp-on sensors and voltage

A DANGER

Connect the clamp-on sensors or voltage cords to the instrument first, and then to the active lines to be measured. Observe the following to avoid electric shock and short circuits.

- To avoid short circuits and potentially life-threatening hazards, never attach the clamp to a circuit that operates at more than the maximum rated voltage to earth (9660: 300 VAC, 9661: 600 VAC, 9667: 1000 VAC, 9669: 600 VAC, 9694: 300 VAC, 9695-02/03: 300 VAC), or over bare conductors.
- Clamp sensor and voltage cable should only be connected to the secondary side of a breaker, so the breaker can prevent an accident if a short circuit occurs. Connections should never be made to the primary side of a breaker, because unrestricted current flow could cause a serious accident if a short circuit occurs.
- Do not allow the voltage cable clips to touch two wires at the same time. Never touch the edge of the metal clips.
- Use only the supplied 9438-03 VOLTAGE CORD to connect the product input terminals to the circuit to be tested.
- When the clamp sensor is opened, do not allow the metal part of the clamp to touch any exposed metal or to short across two lines, and do not use over bare conductors.
- The current input terminals of the 3169-20/21 are not insulated. To avoid the risk of electric shock, only use the specified optional clamp-on sensor.

Handling the cords

- Keep in mind that, in some cases, conductors to be measured may be hot.
- To avoid damaging the power cord, grasp the plug, not the cord, when unplugging the cord from the power outlet.
- To avoid damaging the voltage cords or clamp sensor cables, do not bend or pull near their ends.
- Avoid stepping on or pinching the cable, which could damage the cable insulation.
- Keep the cables well away from heat sources, as bare conductors could be exposed if the insulation melts.
- When disconnecting the BNC connector, be sure to release the lock before pulling off the connector. Forcibly pulling the connector without releasing the lock, or pulling on the cable, can damage the connector.
- Failure to fasten the connectors properly may result is sub-specification performance or damage to the equipment.

Input

Maximum input voltage and maximum rated voltage to earth

- The maximum input voltage of the product is 780 Vrms, 1103 V peak. Do not measure the voltage exceeding that. It causes the personal injury as well as damages the product.
- The maximum rated voltage to earth of the product is 600 Vrms. Do not measure the voltage to earth exceeding that. It causes the personal injury as well as damages the product.
- The maximum rated voltage to earth of clamp sensor depends on the type of clamp sensor used. To avoid electric shock, refer to the instruction manual of a

Io avoid electric shock, refer to the instruction manual of a clamp sensor used.

- To avoid damage to the product, do not short-circuit the output terminal and do not input voltage to the output terminal.
- Voltage input terminals U₁, U₂, and U₃ are common to the N terminal and are not insulated. To avoid the risk of electric shock, do not touch the terminals.
- Note that the product may be damaged if current or voltage exceeding the selected measurement range is applied for a long time
- When the power is turned off, do not apply voltage or current to the voltage input terminals or clamp sensor. Doing so may damage the product.
- To prevent damage to the instrument and sensor, never connect or disconnect a sensor while the power is on, or while the sensor is clamped around a conductor.

Using VT(PT) and CT

NOTE

- When the voltage or current for the power line being measured exceeds the maximum input for this device, use an external VT(PT) or CT.
 - When using an external VT(PT) or CT, make sure you use a device with a minimal phase difference. By setting the VT(PT) or CT ratio, you can read measurement values directly.

Measurement values

- To ensure measurements are precise, warm up the device for at least 30 minutes after plugging it in.
- This device is designed to measure commercial power lines with a frequency of 50 or 60 Hz. It cannot measure power lines of other frequencies or power lines where the waveforms are controlled using an inverter.
- This device cannot measure power lines with superposed direct current.
- This device uses algorithms to measure values for input voltage and current waveforms using (see the specifications). On devices using different operation principles or algorithms differ, differences in measurement values may result.
- The voltage and current measurements will be reduced to zero when inputs are less than 0.4% of the measurement range. When the voltage or current is zero, the active power, reactive power, and apparent power measurements will be reduced to zero and the power factor will be treated as invalid data.

Overview

G

1.1 Product Overview

The 3169-20/21 CLAMP ON POWER HITESTER is a clamp-on wattmeter designed to measure lines ranging from a single-phase line to a three-phase 4-wire line.

The 3169-20/21 can measure demand and harmonics, which are important for power management, as well as such basic measurements of voltage, current, power, power factor, and integrated power (watthours).

The 3169-20/21 supports extended data acquisition and automated measurement, thanks to the use of the PC card and RS-232C interface. This makes the 3169-20/21 suitable for power measurement at commercial frequencies involved in the power maintenance and management of a building or factory.

1.2 Features

Safe design

Designed to comply with safety standard EN61010-1.

Supports a variety of power lines

Measures single-phase 2-wire, single-phase 3-wire, three-phase 3-wire and three-phase 4-wire systems.

Capable of measuring multiple circuits of the same voltage system (same transformer) using one 3169-20/21 unit.

- · Single-phase 2-wire: 4 circuits
- Single-phase 3-wire: 2 circuits
- Three-phase 3-wire: 2 circuits

Detection of Incorrect Connection

On the wiring check screen, you can check whether the phase sequence is correct, voltage cable is connected, and whether the clamp-on sensor is connected in reverse to avoid incorrect connection.

Simultaneous Display of Various Measurements

Measurements of voltage, current, active/reactive/apparent power, power factor, and frequency are displayed simultaneously.

Independent Integration for Different Polarities

Capable of integrating different polarities independently, such as active power consumption/regeneration and reactive power lag/lead.

Three-Voltage, Three-Current Measurement

Capable of measuring 3-voltage, 3-current when the 3169-20/21 is connected to a three-phase, 3-wire line.

Harmonic Measurement

Capable of measuring the harmonics of a power line simultaneously with integrated power (watt-hour) measurement.

Maximum, Minimum, and Average Measurement

Capable of measuring the maximum, minimum, and average values of the voltage, current, and power calculated for each waveform (per interval.)

PC Card Interface

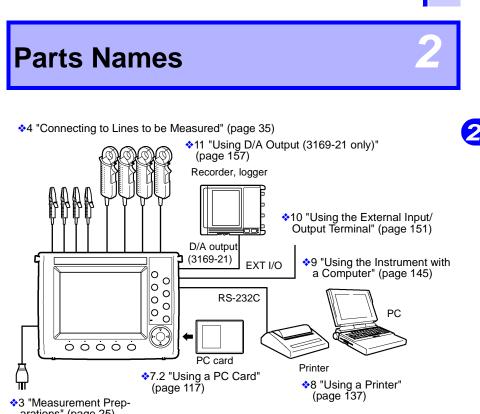
Saves measurement data on a PC card for an extended period. The settings can be saved or read out using the PC card.

RS-232C Interface

The 3169-20/21 includes an RS-232C interface as standard equipment. The instrument is connected to a PC by the interface, and is used for automated measurement.

High-Speed D/A Output (3169-21 only)

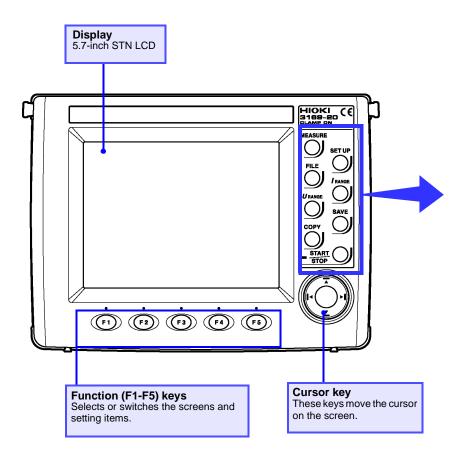
The 3169-21 features D/A output for 4-channel, high-speed analog output.


Compact and light weight

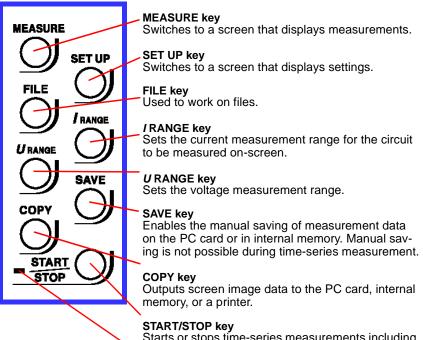
The compact size and light weight allows installation even in limited space, such as in a cubicle.

A choice of optional clamp-on sensors

The following clamp-on sensors are compatible with the 3169-20/21. 9660 CLAMP ON SENSOR (100 A rms rating) 9661 CLAMP ON SENSOR (500 A rms rating) 9667 FLEXIBLE CLAMP ON SENSOR (5000 A rms rating) 9669 CLAMP ON SENSOR (1000 A rms rating) 9694 CLAMP ON SENSOR (5 Arms rating) 9695-02 CLAMP ON SENOSR (50 Arms rating) 9695-03 CLAMP ON SENSOR (100 Arms rating)



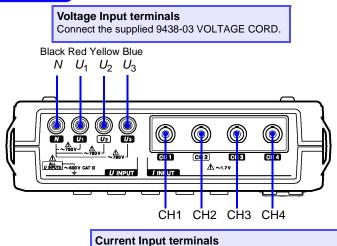
arations" (page 25)


*: The RS-232C is connected to a printer or PC.

2.1 Instrument Labels and Functions

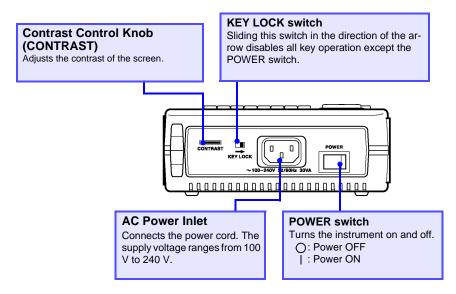
Front Panel

Front Panel Enhanced View

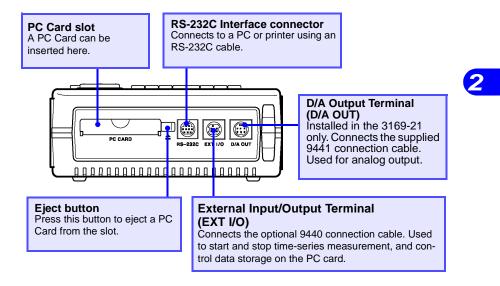


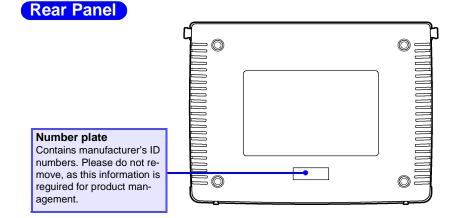
Starts or stops time-series measurements including integration measurement.

START/STOP LED


Flashes in green while the instrument is standing by for time-series measurement, and lights in green while the instrument is performing time-series measurement.

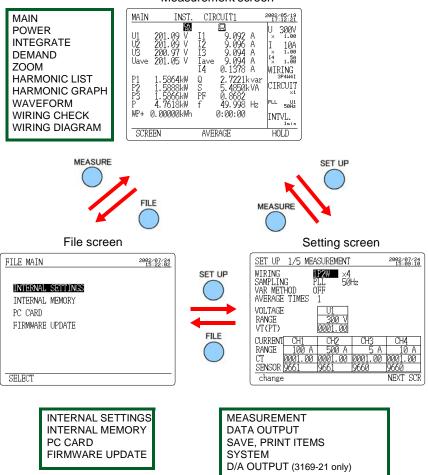
Top Panel




Connect an optional clamp-on sensor.

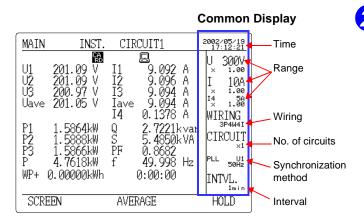
Left Panel

Right Panel



2.2 Screen Names and Display Elements

2.2.1 Screen Configuration


The screens are divided into three basic types: measurement screens, setting screens, and file screens. Each screen is selected using three panel keys: **MEASURE**, **SET UP**, and **FILE**.

Measurement screen

2.2.2 Common Display

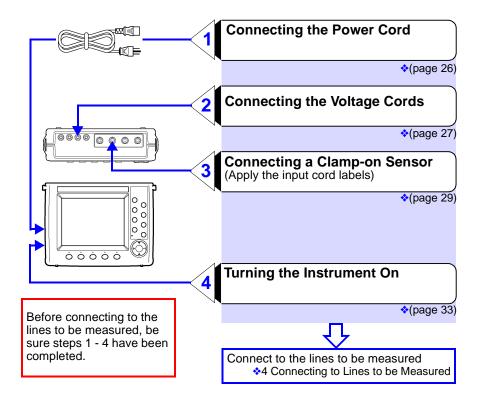
This section of the screen shows information common to all measurement screens (except the zoom screen and the wiring diagram screen).

Time	Displays the current time.
Range	Displays the voltage range and current range of the on-screen circuit. The VT(PT) ratio and CT ratio are shown under these ranges. The current range and CT ratio of I4 are shown only when 3P4W4I is set as the wiring method.
Wiring	Displays the wiring method set on the setting screen.
No. of circuits	Displays the number of circuits to be measured as set on the setting screen.
Synchronization method	Displays the synchronization method and fre- quency of the line to be measured as set on the setting screen.
Interval	Displays the interval set on the setting screen.

2.2.3 On-Screen Indicators

	MAIN INST. CIRCUIT1 🕼 🖍 2002/08/25
	U 150V U1 over V I1 over A × 1.00 U2 over V I2 over A I 5A U3* over V I3* over A × 1.00 Uave over V Iave over A × 1.00
	P over kW Q over kvar S over kVA PF over vvar PF over
	f 50.000 Hz PLL 50Hz WP+ 0.000 Wh 0:00:00 INTVL.
	SCREEN CIRCUIT AVERAGE HOLD
VAR	Goes on when the reactive-power-meter method is ON.
	Goes on when the displayed measurement is held.
CA RD	Goes on when the medium for saving data is set to PC card. Flashes when the PC card is accessed.
м Бм	Goes on when the medium for saving data is set to internal memory. Flashes when the internal memory is accessed.
	internal memory. Flashes when the internal memory
FUL	internal memory. Flashes when the internal memory is accessed.
	internal memory. Flashes when the internal memory is accessed. Goes on when the PC card or internal memory is full. Goes on when the device to be connected to the RS-
	internal memory. Flashes when the internal memory is accessed. Goes on when the PC card or internal memory is full. Goes on when the device to be connected to the RS- 232C is set to PC. Goes on when the device to be connected to the RS-
	 internal memory. Flashes when the internal memory is accessed. Goes on when the PC card or internal memory is full. Goes on when the device to be connected to the RS-232C is set to PC. Goes on when the device to be connected to the RS-232C is set to printer. Goes on when the PLL is unlocked; the synchronization method is automatically switched over to the
FK PL	 internal memory. Flashes when the internal memory is accessed. Goes on when the PC card or internal memory is full. Goes on when the device to be connected to the RS-232C is set to PC. Goes on when the device to be connected to the RS-232C is set to printer. Goes on when the PLL is unlocked; the synchronization method is automatically switched over to the fixed clock.

U3* and I3* indicate that the data is obtained by calculating the 2-voltage, 2-current measurement results when 3P3W2M (three-phase, 3-wire, 2-power-meter method) is selected.


"Appendix" (page 195)

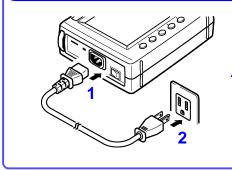
Measurement Preparations

Please read the Usage Notes (page 7) before setting up this instrument.

3.1 Connection Procedure

Refer to the indicated reference items before installing and connecting.

25


3.2 Connecting the Power Cord

$\underline{\mathbb{N}}$

<u>MWARNING</u>

- Before turning the product on, make sure the source voltage matches that indicated on the product's power connector. Connection to an improper supply voltage may damage the product and present an electrical hazard.
- To avoid electric shock and ensure safe operation, connect the power cable to a grounded (3-contact) outlet.

Connecting the Power Cords

- 1. Connect the power cord to the AC power inlet.
- 2. Plug the power cord into the AC mains outlet.

3.3 Connecting the Voltage Cords

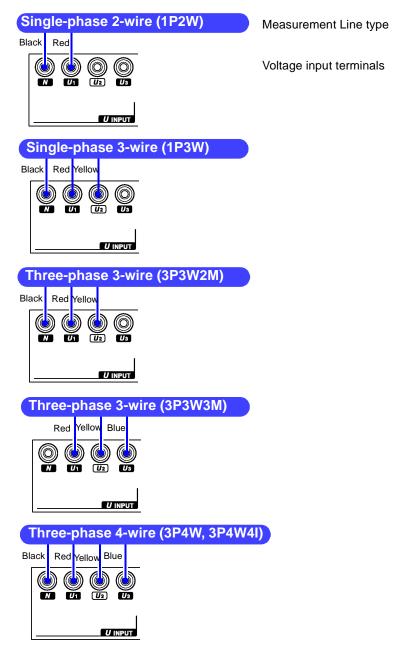
Connect the voltage cords to the product first, and then to the active lines to be measured. Observe the following to avoid electric shock and short circuits.

- Voltage cable should only be connected to the secondary side of a breaker, so the breaker can prevent an accident if a short circuit occurs. Connections should never be made to the primary side of a breaker, because unrestricted current flow could cause a serious accident if a short circuit occurs.
- Do not allow the voltage cable clips to touch two wires at the same time. Never touch the edge of the metal clips.
- Voltage input terminals U_1 , U_2 , and U_3 are common to the N terminal and are not insulated. To avoid the risk of electric shock, do not touch the terminals.

- For safety reasons, when taking measurements, only use the 9438-03 VOLTAGE CORD provided with the product.
- The supplied voltage cords consist of one each red, yellow, blue and black cords. Connect only the cords actually needed for measurement. Cords not being used for measurement should be disconnected.

Connecting the voltage cords to the instrument

Insert plugs all the way in.

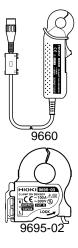

 Connect the voltage cables to the voltage input terminals of the 3169-20/21. The number of voltage cables required depends on the line to be measured.

2. Fully insert the cable plug.

Be sure to hold the voltage cable by its plug when connecting or disconnecting the cable.

Voltage cords and measurement lines

3.4 Using a Clamp-On Sensor (Option)


Connect the clamp-on sensors to the product first, and then to the active lines to be measured. Observe the following to avoid electric shock and short circuits.

- Clamp sensor should only be connected to the secondary side of a breaker, so the breaker can prevent an accident if a short circuit occurs. Connections should never be made to the primary side of a breaker, because unrestricted current flow could cause a serious accident if a short circuit occurs.
- When the clamp sensor is opened, do not allow the metal part of the clamp to touch any exposed metal, or to short between two lines, and do not use over bare conductors.
- To prevent damage to the product and sensor, never connect or disconnect a sensor while the power is on.
- The current input terminals of the 3169-20/21 are not insulated. To avoid the risk of electric shock, only use the specified optional clamp-on sensor.

Use Hioki clamp-on sensor 9660, 9661, 9667, 9669, 9694, or 9695-02/03.

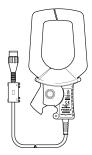
3.4.1 Clamp-On Sensor Specifications

Refer to the Instruction Manual for the specific model for more details.

9660 CLAMP ON SENSOR/ 9695-02 CLAMP ON SENSOR

Rated primary current	100 A AC
Output voltage	1 mVAC/A
Maximum permissible input	130 A continuous (at 45 to 66 Hz, 50°C)
Amplitude accuracy	±0.3%rdg. ±0.02%f.s. (f.s.=100 A, 45 to 66 Hz)
Phase accuracy	Within ±1° (45 Hz to 5 kHz)
Amplitude frequency characteristics	Within ±1% at 40 Hz to 5 kHz (deviation from accuracy)
Maximum rated voltage to earth	300 Vrms
Measurable conductor diameter	15 mm max.
Operating temperature and humidity	0 to 50°C (32°F to 122°F), 80% RH or less (no condensation)
Option	9219 CONNECTION CABLE (for 9695-02/03)

9661 CLAMP ON SENSOR


Rated primary current	500 A AC
Output voltage	1 mVAC/A
Maximum permissible input	550 A continuous (at 45 to 66 Hz, 50°C)
Amplitude accuracy	±0.3% rdg. ±0.01% f.s. (f.s.=500 A, 45 to 66 Hz)
Phase accuracy	Within ±0.5° (45 Hz to 5 kHz)
Amplitude frequency characteristics	Within ±1% at 40 Hz to 5 kHz (deviation from accuracy)
Maximum rated voltage to earth	600 Vrms
Measurable conductor diameter	46 mm max.
Operating temperature and humidity	0 to 50°C (32°F to 122°F), 80% RH or less (no condensation)

9667 FLEXIBLE CLAMP ON SENSOR

Rated primary current	50A to 500A AC 500A to 5000A AC
Output voltage	500 mV AC f.s. (1 mVAC/A) 500 mV AC f.s. (0.1 mVAC/A)
Maximum permissible input	10000 A continuous at 45 to 66 Hz
Amplitude accuracy	±2.0% rdg. ±1.5 mV (45 to 66 Hz)
Phase accuracy	Within ±1° (45 to 66 Hz)
Amplitude frequency characteristics	Within ±3dB, 10 Hz to 20 kHz
Maximum rated voltage to earth	1000 Vrms
Measurable conductor diameter	254 mm max.
Operating temperature and humidity	0 to 40°C (32°F to 104°F), 80% RH or less (no condensation)
Power supply	LR03 alkaline battery x 4 or 9445-02/03 AC ADAPTER

9669 CLAMP ON SENSOR

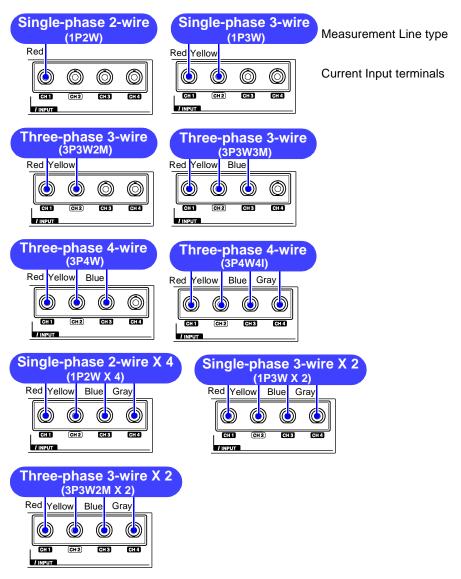


Rated primary current	1000 A AC
Output voltage	0.5 mVAC/A
Maximum permissible input	1000 A continuous (at 45 to 66 Hz, 50°C)
Amplitude accuracy	±1.0% rdg. ±0.01% f.s. (f.s.=1000 A, 45 to 66 Hz)
Phase accuracy	Within ±1° (45 Hz to 5 kHz)
Amplitude frequency characteristics	Within ±2% at 40 Hz to 5 kHz (deviation from accuracy)
Maximum rated voltage to earth	600 Vrms
Measurable conductor diameter	55 mm max.
Operating temperature and humidity	0 to 50°C (32°F to 122°F), 80% RH or less (no condensation)

9694 CLAI	MP ON SEN	SUR/ 9695-03 CLAWP ON SENSOR
Rated primary	/ current	9694: 5 A AC/ 9695-03: 50 A AC
Output voltag	e	10 mVAC/A
Maximum per	missible input	9694: 50 A continuous (at 45 to 66 Hz , 50°C) 9695-02: 60 A continuous (at 45 to 66 Hz , 50°C)
Amplitude acc	curacy	9694: ±0.3%rdg. ±0.02%f.s.(f.s.=5 A, 45 to 66 Hz) 9695-02: ±0.3%rdg. ±0.02%f.s. (f.s.=5 A, 45 to 66 Hz)
Phase accura	су	Within ±2° (45 Hz to 5 kHz)
Amplitude fre characteristic		Within ±1% at 40 Hz to 5 kHz (deviation from accuracy)
Maximum rate earth	ed voltage to	300 Vrms
Measurable c diameter	onductor	15 mm max.
Operating ten humidity	nperature and	0 to 50°C (32°F to 122°F), 80% RH or less (no condensation)
Option		9219 CONNECTION CABLE (for 9695-02/03)

9694 CLAMP ON SENSOR/ 9695-03 CLAMP ON SENSOR

3.4.2 Connecting a Clamp-on Sensor



NOTE

C

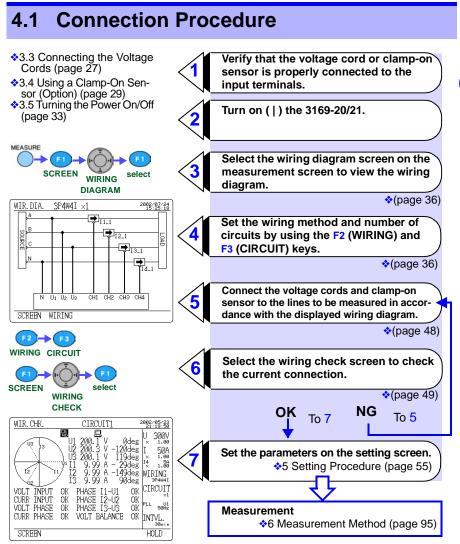
When disconnecting the BNC connector, be sure to release the lock before pulling the connectors apart. Forcibly pulling the connector without releasing the lock, or pulling on the cable, can damage the connector.

Clamp-on sensors and measurement lines

3.5 Turning the Power On/Off

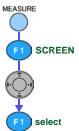
MARNING Before turning the product on, make sure the source voltage matches that indicated on the product's power connector. Connection to an improper supply voltage may damage the product and present an electrical hazard.

Turning the Instrument On/Off Powering On Turn the POWER switch ON (|). As soon as the power is turned on, the self-test screen appears. Upon completion of the self test, display switches to the measurement screen. Power switch On: Screen after the HIOKI 3169 · Model No. of power is turned on the product CLAMP ON POWER HITESTER (Self-test screen) 1.00 Version Version No. BACKUPTEST OK FLASH TEST OK Internal mem-DRAM TEST OK ory test result SRAM TEST OK VRAM TEST OK ADJUST TEST OK Powering Off Turn the POWER switch OFF (\bigcirc). Power switch Off:


If an error occurs during selt-testing, the instrument may be damaged. Contact your dealer or HIOKI representative.

NOTE

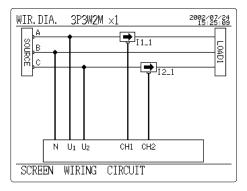
34 3.5 Turning the Power On/Off


Connecting to Lines to be Measured

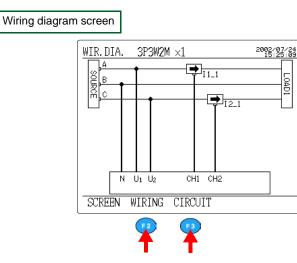
Please read the Usage Notes (page 7) before making connections.

4.2 Connection Methods

4.2.1 Displaying the Wiring Diagram



Press the **MEASURE** key to display the measurement screen.


EEN Press the F1 (SCREEN) key to display the selection window.

Select "WIRING DIAGRAM" by using the cursor key.

Press the F1 (select) key; the wiring diagram will appear.

(Example: 3P3W2M x 1 (three-phase, 3-wire))

(1) Set the Wiring Method.

F2) WIRING Press the F2 (WIRING) key to display the selection window.

1P2W	Measurement of a single-phase, 2-wire line
1P3W	Measurement of a single-phase, 3-wire line
3P3W2M	Measurement of a three-phase, 3-wire line (by the two- power-meter method) *: Select this method to measure three-phase power by measuring the current at two positions only.
3P3W3M	Measurement of a three-phase, 3-wire line (by the three-power-meter method)
3P4W	Measurement of a three-phase, 4-wire line
3P4W4I	Measurement of a three-phase, 4-wire line (used for neutral conductor measurement)

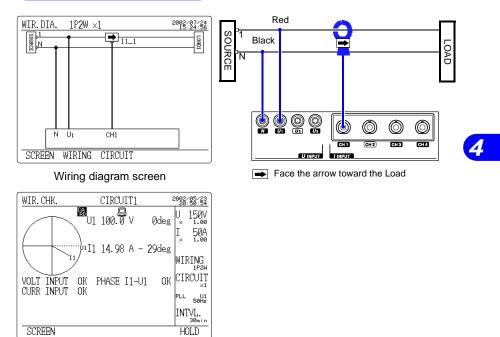
Select a wiring method by using the cursor key.

select Press the F1 (select) key.

(2) Set the Number of Circuits

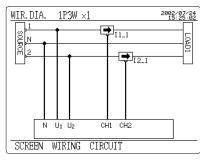
(when measuring multiple circuits).

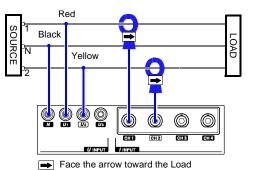
F3 CIRCUIT Press the **F3** (CIRCUIT) key to display the selection window.

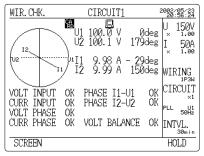

1P2W	1 (1 circuit), 2 (2 circuits), 3 (3 circuits), 4 (4 circuits)
1P3W	1 (1 circuit), 2 (2 circuits)
3P3W2M	1 (1 circuit), 2 (2 circuits)
3P3W3M,3P4W, 3P4W4I	1 (1 circuit)

Select a number of circuits by using the cursor key.

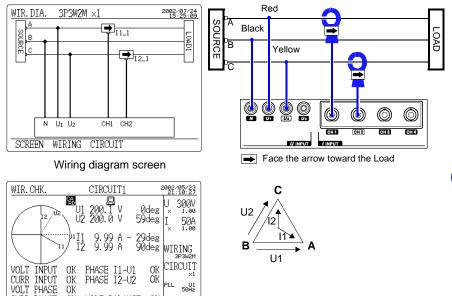
select Press the F1 (select) key.


4.2.2 Basic Wiring for Single-Circuit Measurement


Single-phase 2-wire (1P2W)


Wiring check screen (Power factor: 0.87) \$4.2.5 Checking the Wiring (page 49)

Single-phase 3-wire (1P3W)


Wiring diagram screen

Wiring check screen (Power factor: 0.87)

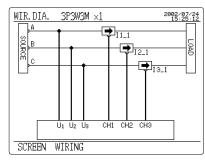
4.2.5 Checking the Wiring (page 49)

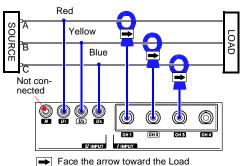
Three-phase 3-wire (3P3W2M) 2-Power-Meter Method

CURR PHASE

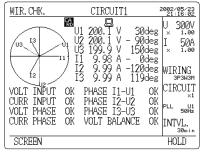
SCREEN

OK


VOLT BALANCE


Wiring check screen (Power factor: 1) *****4.2.5 Checking the Wiring (page 49)

OK INTVL.


HOLD

Three-phase 3-wire (3P3W3M) 3-Power-Meter Method

Wiring diagram screen

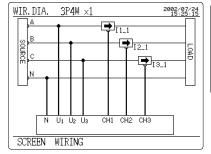
Wiring check screen (Power factor: 1)

4.2.5 Checking the Wiring (page 49)

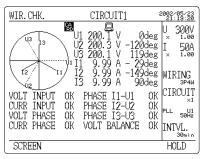
N: Neutral conductor

0

CH 4


((

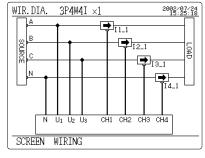
Three-phase 4-wire (3P4W)

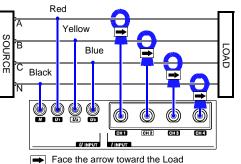

٨

CH1 CH2 CH3

Face the arrow toward the Load

Wiring diagram screen




Wiring check screen (Power factor: 0.87)

4.2.5 Checking the Wiring (page 49)

Three-phase 4-wire (3P4W4I) Neutral Current Measurement

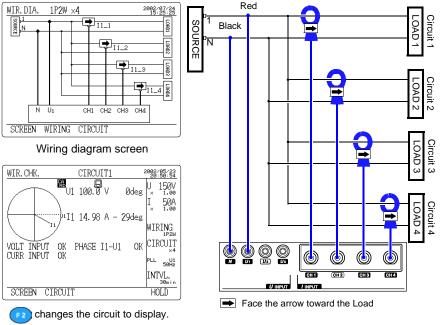
N: Neutral conductor

Wiring iagram screen

The connection for neutral current I4 is not checked.

WIR.CHK.	CIRCUIT1	2002/05/23 21:19:50
	2 200.3 V -120 3 200.1 V 119 1 9.99 A - 29 2 9.99 A -149)deg × 1.00)deg × 1.00)deg WIRING
VOLT INPUT OK CURR INPUT OK VOLT PHASE OK CURR PHASE OK	3 9.99 A 90 PHASE I1-U1 PHASE I2-U2 PHASE I3-U3 VOLT BALANCE	OK OK OK OK OK OK INTVL. 30min
SCREEN		HOLD

Wiring check screen (Power factor: 0.87)


4.2.5 Checking the Wiring (page 49)

4.2.3 Wiring for Multiple-Circuit Measurement

- One 3169-20/21 unit can measure multiple circuits of the same voltage system (same transformer).
 - The wiring mode is common to all circuits.
 - Measurements of the current channels will not be zeroed when the device is not connected to the clamp-on sensor.

Single-phase 2-wire, 4circuits (1P2W X 4)

NOTE

Wiring check screen (Power factor: 0.87) \$4.2.5 Checking the Wiring (page 49)

Single-phase 3-wire, 2circuits (1P3W X 2)

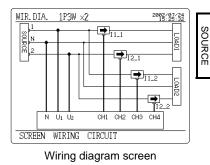
2002/05/23 20:56:24

WIRING 1P3W CIRCUIT

HOLD

Ødeg

OK


OK PLL UI

OK INTVL.

179deg

- 29deg 150deg 1500

50A

CIRCUIT1

9.98 A 9.99 A

PHASE I1-U1 PHASE I2-U2

VOLT BALANCE

U1 100.0 V U2 100.1 V

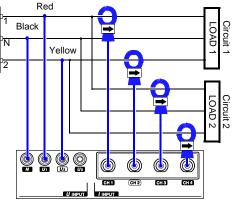
CA RD

> µ¹I1 I2

OK OK

OK OK

WIR.CHK.

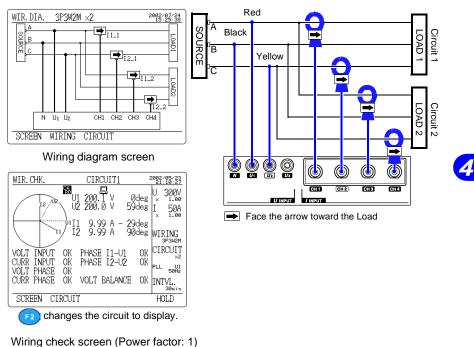

12

VOLT INPUT

CURR INPUT VOLT PHASE CURR PHASE

SCREEN CIRCUIT

102


Face the arrow toward the Load

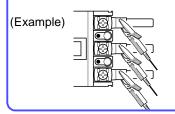
changes the circuit to display.

Wiring check screen (Power factor: 0.87)

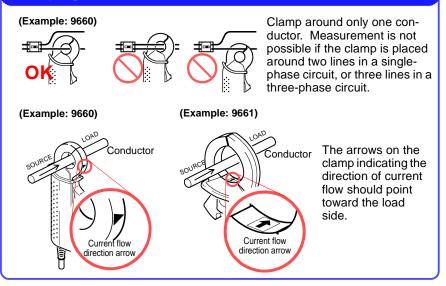
4.2.5 Checking the Wiring (page 49)

Three-phase 3-wire, 2circuits (3P3W2M X 2) 2-Power-Meter Method

◆4.2.5 Checking the Wiring (page 49)


4.2.4 Connection to a Line to Be Measured

Connect the voltage cables and clamp-on sensor to the line to be measured, while referring to the wiring diagram.


To ensure correct measurement results, follow the instrument setup and wiring instructions precisely.

Connecting the Voltage Cords to the Lines to be Measured

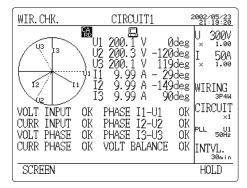
Clip securely to metal parts such as connection screws or bus bars at the power side.

Clamping a Sensor to a Line to be Measured

4.2.5 Checking the Wiring

MEASURE

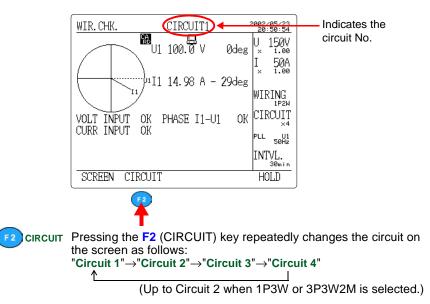
select


Check to see if the 3169-20/21 is correctly connected to the line to be measured.

Press the **MEASURE** key to display the measurement screen.

SCREEN Press the F1 (SCREEN) key to display the selection window.

Select "WIRING CHECK" by using the cursor key.


Press the **F1** (select) key; the wiring check will appear. The connection status is shown by the voltage, current vectors, and the connection check result.

- The wiring check function may indicate incorrect connection even when the actual connection is correct, or vice versa. Check the vectors and measurements as well.
- The length of a vector is not related to input level. It only indicates the phase relationship.
- A minus sign (-) with the phase angle indicates a lag phase angle; a plus sign (+) indicates a lead phase angle. The phase angle is calculated using the phase of the fundamental of the PLL source (U₁) as a reference.
- The voltage levels, current levels, and phase angles displayed on-screen are those of the fundamental component.

(1) Display the Screen of Another Circuit (when measuring multiple circuits).

(2) Change the Voltage Range.

个

Pressing the URange key repeatedly changes the range as follows: "150 V" \rightarrow "300 V" \rightarrow "600 V"

(3) Change the Current Range.

Pressing the *I* Range key repeatedly changes the range for the circuit on the screen as follows:

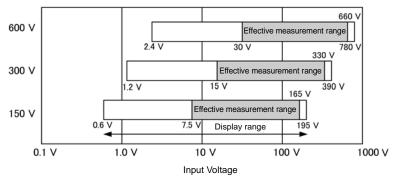
When using the 9660/9695-03:	"5 A"→"10 A"→"50 A"→"100 A" ↑
When using the 9661:	"5 A"→"10 A"→"50 A"→"100 A"→"500 A"
When using the 9667: 5000/500-A range	"5 kA"/ "500 A" fixed
When using the 9669:	"100 A"→"200 A"→"1 kA" 1
When using the 9694:	"500 mA"→"1 A"→"5 A" ↑
When using the 9695-02:	"500 mA"→"1 A"→"5 A"→"10 A"→"50 A" ↑

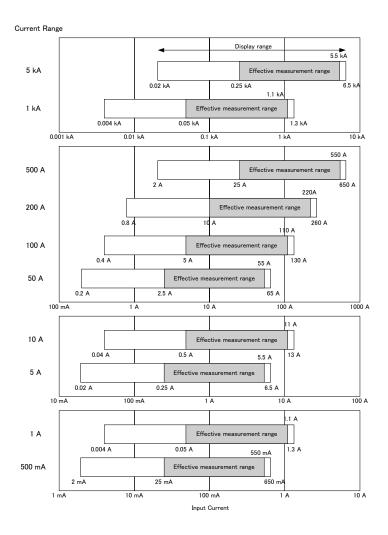
5.2.9 Setting the Clamp-On Sensor (page 67)

The table below lists the wiring check items and criteria.

Wiring Check Item	Criteria
Voltage input	NG when input is less than 10% of the voltage range
Current input (except for I4 when 3P4W4I is selected)	NG when input is less than 1% of the current range
Phase difference (cur- rent - voltage)	NG when each current is not within ± 60 de- grees with respect to the voltage of each phase
Voltage phase	1P3W: NG when U2 is not within 180 degrees \pm 10 degrees with respect to U1 3P3W2M: NG when the phase lead of U2 is not within 60 degrees \pm 10 degrees with respect to U1 3P3W3M, 3P4W, 3P4W4I: NG when the phase lag of U2 is not within 120 degrees \pm 10 de- grees with respect to U1, or when the phase lead of U3 is not within 120 degrees \pm 10 de- grees with respect to U1
Current phase (for three-phase lines only)	NG when current phase sequence is negative
Voltage balance (ex- cept for 1P2W)	NG when one voltage is 70% or less than the other voltage

P The wiring check result is NG.


The voltage input is NG.	 Do the voltage clips grip the wires properly? Is the voltage cable properly inserted into the voltage input terminal of the 3169-20/ 21?
The current input is NG.	 Is the clamp-on sensor securely inserted into the current input terminals? Is the set current range too large for the input level?
The voltage phase is NG.	 Are the voltage cables connected to the correct terminals?
The current phase is NG.	 Does the arrow of the clamp-on sensor point to the load side? Is the clamp-on sensor connected to the correct terminals?
The phase differ- ence (I-U) is NG.	 Are the voltage cables and clamp-on sensor properly connected? Does the arrow of the clamp-on sensor point to the load side? Is the power factor of the line to be measured too low, such as 0.5 or less?
The voltage bal- ance is NG.	 Does the connection method of the line to be measured differ from that set? Do the voltage clips grip the wires properly? Is the voltage cable properly inserted into the voltage input terminal?


4.3 Measurement Range

This unit is not equipped with an automatic range selection function, therefore you must select the operation ranges. The display and effective measurement ranges (ranges where accuracy is cer-

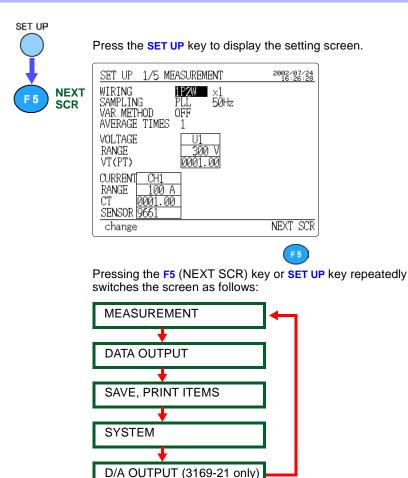
tain) of measurement ranges are as follows.

Voltage Range

NOTE

• Dynamic range overflow warning

This warning is indicated when the input signal exceeds the maximum or falls below the minimum (out of crest factor) during waveform acquisition (A/D conversion). In either case, change the range setting to that with a sufficient margin. (Indicator: Let Term)


Over range

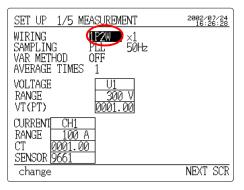
This warning is indicated when a measurement exceeds 130%f.s. of the range. Change the range setting to that with a sufficient margin. (Indicator: over)

55

Setting Procedure

5.1 Setting Screen

5.2 Setting on the Measurement Setting Screen (MEASUREMENT)


The measurement setting screen enables the items below to be set.

- Wiring method
- Number of circuits to be measured
- · Synchronization method
- Reactive-power-meter method
- Display averaging times
- Voltage range
- VT (PT) ratio
- Current range
- CT ratio
- Clamp-on sensor

SET UP 1/5 MEASUREMENT	2002/07/24 16:26:28
WIRING IP2W ×1 SAMPLING PLL 50Hz VAR METHOD OFF AVERAGE TIMES 1	
VOLTAGE U1 RANGE 300 V VT(PT) 0001.00	
CURRENT CH1 RANGE 100 A CT 0001.00 SENSOR 9661	
change	NEXT SCR

Measurement setting screen

5.2.1 Setting the Wiring Method

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to "WIRING."

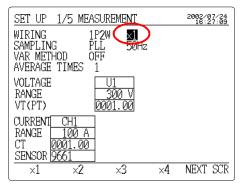
change Press the F1 (change) key to display the selection window.

1P2W	Measurement of a single-phase, 2-wire line
1P3W	Measurement of a single-phase, 3-wire line
3P3W2M	Measurement of a three-phase, 3-wire line (by the two- power-meter method) *: Select this method to measure three-phase power by measuring the current at two positions only.
3P3W3M	Measurement of a three-phase, 3-wire line (by the three-power-meter method)
3P4W	Measurement of a three-phase, 4-wire line
3P4W4I	Measurement of a three-phase, 4-wire line (used for neutral conductor measurement)

Select a wiring method by using the cursor key.

select Press the F1 (select) key.

SET UP


NEXT

SCR

3P3W2M and 3P3W3M

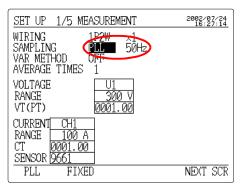
The active power measurement results will be the same regardless of whether measurement is conducted by 3P3W2M (i.e., 2voltage, 2-current, 2-power-meter method) or 3P3W3M (i.e., 3voltage, 3-current, 3-power-meter method). When 3P3W2M is selected, U3 and I3 will be calculated based on the U1, U2, or I1, I2 measurements.

Set the Number of Circuits to Be Measured.

F5 NEXT F5 SCR F1 X 1 F2 X 2 F3 X 3 F4 X 4

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)


Move the cursor to Number of Circuits.

Set the number of circuits by using the function keys.

	, , ,
1P2W	X 1 (1 circuit), X 2 (2 circuits),
	X 3 (3 circuits), X 4 (4 circuits)
1P3W	X 1 (1 circuit), X 2 (2 circuits)
3P3W2M	X 1 (1 circuit), X 2 (2 circuits)
3P3W3M,3P4W,	X 1 (1 circuit) only
3P4W4I	

The 3169-20/21 can measure multiple circuits of the same voltage system (same transformer).

5.2.2 Setting the Synchronization Method

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to "SAMPLING."

Set the synchronization method by using the function keys.

PLL	PLL (default)
FIXED	Fixed clock

* Normally set to PLL

SET UP

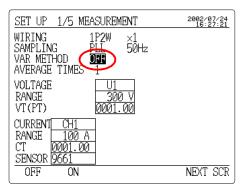
NEXT

SCR

PLL FIXED

50 Hz

60 Hz


Move the cursor to Measured Frequency.

Set to the frequency of the line to be measured by using the function keys. (Default: 50 Hz)

What is PLL?

PLL stands for "Phase Locked Loop" and is a phase synchronization circuit. The 3169-20/21 uses PLL to generate a frequency synchronized with the fundamental wave (50/60 Hz) and multiplied by 128, to sample input waveforms of voltage and current. If there is no PLL input (PLL source), there is no means of sampling input waveforms, and calculation cannot be performed. This is called "PLL unlock." When there is no PLL source, the 3169-20/21 switches the synchronization method over to the internal clock (50/ 60 Hz fixed clock).

5.2.3 Setting the Reactive-Power-Meter Method

60

Press the **SET UP** key to display the setting screen.

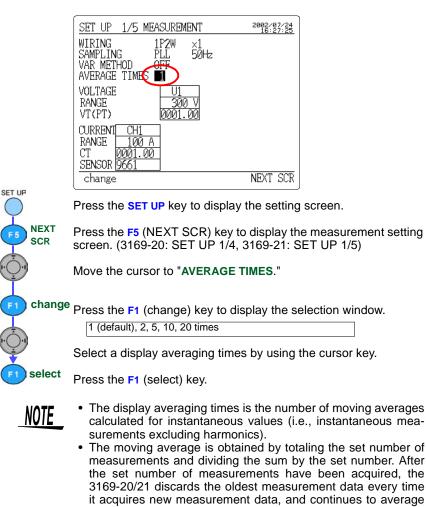
Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to "VAR METHOD."

Use the function keys to set whether to use the reactive-power-meter method.

OFF	Do not use the reactive-power meter method (default).
ON	Use the reactive-power-meter method.

When the reactive-power-meter method is OFF (not to be used), the signs for lag and lead will not be added to reactive-power measurements.



What is the Reactive-power-meter method?

- The reactive-power-meter method is used to measure reactive power directly from the voltage and current, like a reactive power meter installed for large power consumers.
- With some voltage and current waveforms, reactive power, apparent power, and power factor measurements may vary depending on the reactive-power-meter setting.
- <Influence on the Power Factor> When the reactive-power-meter method is OFF (not to be used), the power factor is obtained as a ratio of the active power to apparent power. Because calculation includes the harmonic component, the power factor will decrease as the harmonic current increases.

When the reactive-power-meter method is ON (to be used), the power factor is obtained as a cosine of the phase difference between the fundamental voltage and fundamental current. Calculation is performed using the fundamental component only, and does not include the harmonic component.

5.2.4 Setting the Display Average Times

the set number of measurements. Value to be displayed on-screen = $(Z_{(n-(N-1))} + Z_{(n-(N-2))} + ... + Z_{n})/N$

 Z_n : The nth measurement

N: Set number

If measurements fluctuate drastically, use the averaging function to stabilize the values displayed on-screen.

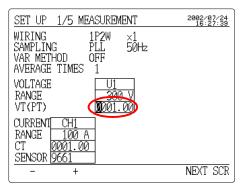
5.2.5 Setting the Voltage Range

SET UP 1/5 MEASUREMENT	2002/07/24 16:27:34
WIRING 1P2W ×1 SAMPLING PLL 50Hz VAR METHOD OFF AVERAGE TIMES 1	
VOLTAGE LA RANGE COULTON VT(PT) 0001-00	
CURRENTI CH1 RANGE 100 A CT 0001.00 SENSOR 9661	
- +	NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to "VOLTAGE RANGE."


Set the voltage range by using the function keys as follows: (Select a range from 150 V, 300 V, and 600 V.)

-	Changes to a smaller range.
+	Changes to a larger range.

A range can be selected using the **URANGE** key on the measurement screen.

5.2.6 Setting the VT Ratio (PT Ratio)

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

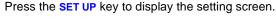
Move the cursor to the "VT" digit to be changed.

Set the VT ratio by using the function keys as follows: (Cursor <: Moves left to next digit; Cursor >: Moves right to next digit)

-	Decrements the number.
+	Increments the number.

Setting range: 0.01 to 9999.99 (Default: 1.00)

This ratio is used for measurement conducted on the secondary side of an external voltage transformer (VT) to convert the voltage measured to the primary voltage to be displayed.


What is VT?

VT stands for "voltage transformer." It is also referred to as "PT" (potential transformer). VT is used in high-voltage measurement to convert (step-down) the voltage measured to a smaller level and supply the conversion result to an instrument.

VT ratio (voltage transformation ratio): A ratio used to convert the secondary voltage of VT to the primary voltage.

5.2.7 Setting the Current Range

SET UP 1/5 MEASUREMENT	2002/07/24 16:28:31
WIRING 1P2W ×4 SAMPLING PLL 50Hz VAR METHOD OFF AVERAGE TIMES 1	
VOLTAGE U1 RANGE 300 V VT(PT) 0001.00	
CURRENT CH1 CH2 CH2 RANGE 100 A 100 A 100 CT 0001.00 0001.00 0001. 00 0001. SENSOR 9661 9661 9661 9661 9661	3 CH4 3 A 100 A 00 0001.00 9661
- +	NEXT SCR

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to "CURRENT RANGE" of the circuit to be changed.

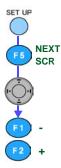
Set the current range by using the function keys as follows:

-	Changes to a smaller range.
+	Changes to a larger range.

Clamp-On Sensor and Current Range

9660/ 9695-03	5 A, 10 A, 50 A, 100 A
9661	5 A, 10 A, 50 A, 100 A, 500 A
9667-5 kA (5000 A range)	5 kA
9667-500 A (500 A range)	500 A
9669	100 A, 200 A, 1 kA
9694	0.5 A, 1 A, 5 A
9695-02	0.5 A, 1 A, 5 A, 10 A, 50 A

SET UP


, , NEXT

SCR

The selectable current ranges vary depending on the clamp-on sensor used. When the connection method is 3P4W4I, a current range can be set for I4 that differs from that for I1 to I3.

5.2.8 Setting the CT Ratio

SET UP 1/5 MEA	SUREMENT	2002/07/24 16:28:35
SAMPLING P	P2W ×4 LL 50Hz FF 1	
VOLTAGE RANGE VT (PT)	U1 300 V 0001.00	
CURRENT CH1 RANGE 100 A CT 10001.00 SENSOR 9661	CH2 CH3 100 A 100 A 0001.00 0001.00 9661 9661	CH4 100 A 0001.00 9661
- +		NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to the digit of "CT" of the circuit to be changed.

Set the CT ratio for each circuit by using the function keys. (Cursor ◀: Moves left to next digit; Cursor ►: Moves right to next digit)

-	Decrements the number.
+	Increments the number.

Setting range: 0.01 to 9999.99 (Default: 1.00)

This ratio is used for measurement on the secondary side of an external current transformer (CT) to convert the current measured to the primary current to be displayed.

What is CT?

CT stands for "current transformer." CT is used to measure large current to reduce the current measured to a smaller level and supply the conversion result to an instrument.

CT ratio (current transformation ratio): A ratio used to convert the secondary current of CT to the primary current.

5.2.9 Setting the Clamp-On Sensor

SET UP 1/5 ME	ASUREMENT		2002/07/24 16:28:41
SAMPLING	1P2W ×4 PLL 50 OFF 1	Ηz	
VOLTAGE RANGE VT(PT)	U1 300 V 0001.00		
CURRENT CH1 RANGE 100 A CT 0001-00 SENSOR 0661	CH2 100 A 0001.00 9661	CH3 100 A 0001.00 9661	CH4 100 A 0001.00 9661
change			NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the measurement setting screen. (3169-20: SET UP 1/4, 3169-21: SET UP 1/5)

Move the cursor to "SENSOR" of the circuit to be changed.

Press the F1 (change) key to display the selection window.

9660	Use the 9660 CLAMP ON SENSOR (100 A rated).
9661	Use the 9661 CLAMP ON SENSOR (500 A rated).
9667-5kA	Use the 9667 FLEXIBLE CLAMP ON SENSOR (5000 A rat- ed). (5000 A range)
9667-500A	Use the 9667 FLEXIBLE CLAMP ON SENSOR (500 A rat- ed). (500 A range)
9669	Use the 9669 CLAMP ON SENSOR (1000 A rated).
9694	Use the 9694 CLAMP ON SENSOR (5 A rated).
9695-02	Use the 9695-02 CLAMP ON SENSOR (50 A rated).
9695-03	Use the 9695-03 CLAMP ON SENSOR (100 A rated).

Select a clamp-on sensor for each circuit by using the cursor key.

Press the F1 (select) key.

NOTE

select

SET UP

NEXT

SCR

change

- When the wiring method is 3P4W4I, a clamp-on sensor can be set for I4 that differs from that for I1 to I3.
 - The range setting for the 9667 sensor is made on the sensor (500/5000 A range). When power to the 9667 is turned off, then back on again, the range is always set to 5000 A. When the 9667 is to be used for an extended period with the AC adapter, we recommend that a battery be used as well.

5.3 Setting on the Data Output Setting Screen (DATA OUTPUT)

The data output setting screen allows setting of the following items.

- Time-series measurement start method
- Time-series measurement ending method
- Interval

68

- Medium for saving data
- Data file name
- Device to be connected to RS-232C
- · Medium to which the screen is to be copied

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:15:25
MEAS. START	<u>TIME</u> 2002/07/24	10.20
MEAS. STOP	2002/07/24 MANUAL	19:30
MERO, DIOI		
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	JUST	NEXT SCR

5.3.1 Setting the Time-Series Measurement Start Method

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:15:25
MEAS. START	TIME	10.00
MEAS. STOP	2002/07/24 MANUAL	19:30
MEMO. DIUP	MUNICAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	JUST	NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "MEAS. START."

Set the time-series measurement start method using the function $\ensuremath{\mathsf{MANUAL}}_{keys.}$

MANUAL	Manual Measurement starts when the START/STOP key is pressed (default setting).
TIME	Measurement starts at the set time.*1
JUST	Measurement will begin as soon as the internal clock reaches a time that is evenly divisible by the set interval.
	Example: If the current time is 10:41:22, and the measurement interval is set to 30 minutes, then measurement will start at 11:00:00 (:00 minutes [or :60 minutes] is evenly divisible by 30 as 60/30 = 2 with no remainder) with the next recording at 11:30:00, 12:00:00, etc.). If the interval is set to 10 minutes, measurement will start at 10:50:00.

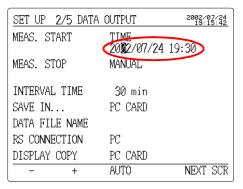
*1:The 3169-20/21 will enter into waiting status when the **START/STOP** key is pressed to start measurement. Measurement will then start at the set time.

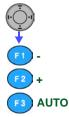
SET UP

NEXT SCR

TIME JUST

The **START/STOP** key is effective only when the measurement screen is displayed. It is not effective when the setting screen is displayed.


Notes for long term measurement


The longest measurement period of this unit is one year. The instrument will automatically stop time-series measurement when one year has elapsed since the start of the timeseries measurement. To continue measurement, restart the unit and then resume the time-series measurement.

•The measurement settings are saved even after restarting the unit.

Set the time again when using the "TIME" start and stop.

Set the Time-Series Measurement Start Time (when the start method is set to time).

Move the cursor to the digit to be changed in the measurement start date and time.

Set the start time using the function keys.

(Cursor ◀: Moves left to next digit; Cursor ►: Moves right to next digit)

-	Decrements the number.
+	Increments the number.
AUTO	Set the start time to any subsequent time.

If the set measurement start time has already expired when the **START/STOP** key is pressed, the 3169-20/21 displays an error message and starts measurement by the "Just" start method, which commences measurement at the optimal time.

5.3.2 Setting Time-Series Measurement Stop Method

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:16:04
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	TIMER	NEXT SCR

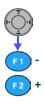
Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "MEAS. STOP."

Set the time-series measurement stop method using the function MANUAL keys.

TIME		
TIMER		Manua IMeasurement stops when the START/STOP key is pressed (default setting).
	TIME	Measurement stops at the exact time set by users.
	TIMER	Measurement stops when the duration set by the users has elapsed.
		1 second to 8784 hours


SET UP

NEXT SCR

When the stop method is set to Time or Timer, if the **START/STOP** key is pressed during measurement, a message is displayed requesting confirmation. Pressing the **F1** (yes) key stops measurement immediately.

Set the Time-Series Measurement Stop Time (when the stop method is set to Time).

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:16:29
MEAS. START	MANUAL	
MEAS. STOP	TIME 2002/07/25	01:00
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
- +		NEXT SCR

Move the cursor to the digit to be changed in the measurement stop date and time.

Set the measurement stop time using the function keys. (Cursor **<**: Moves left to next digit; Cursor **>**: Moves right to next digit)

-	Decrements the number.
+	Increments the number.

Set the Timer (when the stop method is set to Timer).

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:16:56
MEAS. START	MANUAL	
MEAS. STOP	D000:01:00	
INTERVAL TIME	1 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
- +		NEXT SCR

Move the cursor to the digit of the timer setting to be changed.

Set the timer using the function keys. (Cursor ◀: Moves left to next digit; Cursor ►: Moves right to next digit)

-	Decrements the number.
+	Increments the number.

5

5.3.3 Setting Interval

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:17:10
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
change		NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "INTERVAL TIME."

change Press the F1 (change) key to display the selection window.

Standard interval	1, 2, 5, 10, 15, 30 s, 1, 2, 5, 10, 15, 30, 60 m
Short-term interval	Full wave (Each one cycle), 100m, 200m, 500ms

Select an interval with the cursor key.

select Press the F1 (select) key.

- The data storable time varies depending on the setting of the data storage items and interval.
- The setting ranges for data output items vary depending on the setting of the interval.
- When the interval is 30 seconds or less, harmonic measurement-data output and printer output are not available.
- When a short-term interval is selected, the 3169-20/21 outputs the instantaneous values of normal measurement only. The file will be in binary format and must be converted to a text file to be read into a generally available spreadsheet software. For details on spreadsheet software, see the CD-R supplied with the 3169-20/21.

74

SET UP

F 1

NEXT

SCR

Observe the following precautions when setting the interval to 2 seconds or less:

- Use the optional PC card.
- Be sure to format the PC card.
- Insert the PC card before starting time-series measurement.
- Do not remove the PC card during measurement.
- Do not perform communications.
- Do not operate the keys too frequently.

5.3.4 Setting Medium for Saving Data

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:17:18
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME	\smile	
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
CARD MEMORY		NEXT SCR

SET UP

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "SAVE IN "

CARD Set the medium for saving data using the function keys.

MEMORY

NEXT

SCR

When the PC card is selected, if a PC card is not installed or the 3169-20/21 fails to write data onto the PC card, the data will be stored in the internal memory as backup data.

75

5.3.5 Setting the Data File Name

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:18:01
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME	ABCDEFG	
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
change		NEXT SCR

FI change F1 change F1 input F2 BS F3 enter F4 cancel

76

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "DATA FILE NAME."

Press the F1 (Change) key to display the file-name input window.

Set the file name using the cursor and function keys (up to 8 letters and numbers).

[Cursor	Selects characters
Ī	input	Inputs the selected character
Ī	BS	Backspace (deletes the inputted character)
Ī	enter	Accepts the file name entry
Ī	cancel	Exits the file name input window unchanged

If no file name is set, the 3169-20/21 will automatically name the file.

7.1 Types of Files (page 115)

5.3.6 Setting Device to Be Connected to the RS-232C

SET UP 2/5 DATA	OUTPUT	2002/07/24 19:18:53
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME	\frown	
RS CONNECTION	(PC)	
DISPLAY COPY	PC CARD	
PC PRINTER		NEXT SCR

F5 NEXT SCR F1 PC F2 PRINER

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "RS CONNECTION."

Use the function keys to set the device to be connected to the RS-232C interface (Default: PC).

5.3.7 Setting the Medium to which the Screen is to be Copied

OUTPUT	2002/07/24 19:18:55
MANUAL	
MANUAL	
30 min	
PC CARD	
PC	
PC CARD	
	NEXT SCR
	MANUAL MANUAL 30 min PC CARD PC

F5 NEXT SCR F1 CARD

78

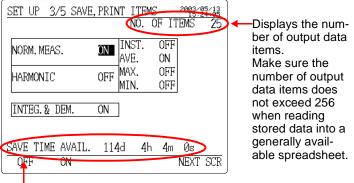
Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data output setting screen. (3169-20: SET UP 2/4, 3169-21: SET UP 2/5)

Move the cursor to "DISPLAY COPY."

Use the function keys to set the medium to which the screen is to be copied.

MEMORY


The F3 (Printer) key will not be displayed on the screen unless the printer is selected as the device to be connected to the RS-232C.

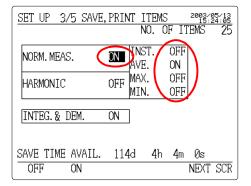
5.4 Setting on the Save/Print Items Setting Screen (SAVE, PRINT ITEMS)

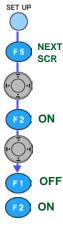
The save/print items setting screen allows the following items to be set or displayed:

- Display the number of output data items and storable time.
- Set the normal measurement-data output items.
- Set the integrated power and demand measurement-data output.
- Set the harmonic measurement-data output items.

5.4.1 Checking the number of output data items and Storable Time

Save/print items setting screen


Displays the storable time Displays the data storable time of the set medium for saving data (PC card/internal memory) (xxx days: xx hours: xx minutes: xx seconds)



Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the save/print items setting screen. (3169-20: SET UP 3/4, 3169-21: SET UP 3/5) 5

5.4.2 Setting Normal Measurement-Data Output Items

Press the SET UP key to display the setting screen.

Press the F5 (NEXT SCR) key to display the save/print items setting screen. (3169-20: SET UP 3/4, 3169-21: SET UP 3/5)

Move the cursor to "NORM. MEAS."

Press the F2 (ON) key to turn ON normal measurement.

Move the cursor to "INST." (instantaneous values.)

Turn data output ON/OFF using the function keys.

Turn the output of other items (average, maximum, and minimum values) ON/OFF in a similar way.

- Normal measurement data includes, for each channel, the voltage, current, active power, reactive power, apparent power, power factor, frequency, and each phase power.
- Detailed setting is not available for each piece of normal measurement data above.

5.4.3 Setting Integrated power and Demand Measurement-data Output Items

SET UP 3/5 SAVE,	PRIN	NT ITE	MS OF T	15:2	25/13 24:33 25
NORM. MEAS.	ON	INST.	OFF		23
HARMONIC	OFF	AVE. MAX.	ON OFF		
	UFF	MIN.	OFF		
INTEG. & DEM.	ON				
SAVE TIME AVAIL.	114	4d 4	h 4m	Øs	
OFF ON				NEXT	SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the save/print items setting screen. (3169-20: SET UP 3/4, 3169-21: SET UP 3/5)

Move the cursor to "INTEG. & DEM .. "

Press the F2 (ON) key to turn ON the integrated power/demand measurement data.

- Integrated power/demand measurement data includes the total integrated power, integrated power within interval, demand value, and maximum demand value.
- Detailed setting cannot be performed for each piece of integrated power/demand measurement data above.

81

5.4.4 Setting Harmonic Measurement-data Output Items

(1) Set the Harmonic Measurement-data Output.

SET UP 3/5 SAVE	, PRINT		IS OF II	2003/0 15:2 TEMS	4:54 4:54 48
NORM. MEAS.	UN 1	NST. VE.	OFF ON		
HARMONIC	ON	AX. IN.	OFF OFF		
INTEG. & DEM.	ON				
SAVE TIME AVAIL. OFF ON	59d DETAIL		1 31m	Øs NEXT	SCR

F² ON F¹ OFF F² ON

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the save/print items setting screen. (3169-20: SET UP 3/4, 3169-21: SET UP 3/5)

Move the cursor to "HARMONIC."

Press the F2 (ON) key to turn ON harmonic measurement.

Move the cursor to "INST." (instantaneous values.)

Turn data output ON/OFF using the function keys.

Turn the output of other items (average, maximum, and minimum values) ON/OFF in a similar way.

(2) Set the Details of Harmonic Measurement-data Output.

	<u>3/5 SAVE,PRINT ITEMS</u> 2003/25:13 set <u>ti</u> ngs NO. OF ITEMS 67
CIRCUIT	
	U1 ON U2 OFFU3 OFFIP ON I1 ON I2 OFFI3 OFFI4 OFF
TYPE	LEVEL ON %ofFND OFFPHASE OFF THD ON TOTAL OFFWAVE OFF
ORDER	SELECT
	*01 02 *03 04 *05 06 *07 08 *09 10 *11 12 *13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
SAVE TIM	NE AVAIL. 42d 13h 46m Øs
OFF	ON RETURN

DETAILS Press the F3 (Detail Setting) key on the save/print items setting screen to display the harmonic output detail setting screen.

Turn the output of each piece of data $\ensuremath{\mathsf{ON/OFF}}$ using the cursor and function keys.

5

OFF ON

- The waveform data is not printed in the auto print function.
- The waveform data of U3 and I3 are not saved in the 3P3W2M wiring system.

Select Order for Output.

SET UP Detailed	3/5 SAVE setting		TEMS O. OF IT	^{2003/05/13} 15:25:48 EMS 67
CIRCUIT	1 ON U	2 OFFU3	OFF P ON	
TYPE	II ON II	2 OFF I3 N %ofFNI	OFFI4 OF	F SE OFF
ORDER	THD C	N TOTAL	OFF WAVI	e off
	*01 02 # *11 12 * 21 22 31 32	83 04 *05 13 14 15 23 24 25 33 34 35	06 #07 08 16 17 18 26 27 28 36 37 38	*09 10 19 20 29 30 39 40
SAVE TIN	NE AVAIL. ODD	42d EVEN	13h 46m SELECT	Øs RETURN

Move the cursor to "ORDER."

Set orders using the function keys.

When F4 (SELECT) is selected

Move the cursor to the order of the data to be output.

Turn data output ON/OFF using function keys. (When an asterisk "*" marks the order, the data will be output.)

5.5 Setting on the System Setting Screen

The system setting screen allows setting of the following items:

- Total harmonic distortion (THD) calculation method
- · Harmonic order for display
- RS-232C
- LCD backlight
- Beep sound
- ID No.
- Clock
- Language
- Display of the Version/serial No.

SET UP 4/5 SYST	EM	2002/07/24 19:23:55
THD HARM. DISP. ORD. RS-232C	THD-F ALL ORDERS	
BAUD RATE TERMINATOR FLOW CONTROL	9600bps CR+LF NONE	
BACKLIGHT BEEP SOUND	AUTO ON 001	
TIME AND DATE LANGUAGE	ŽÕÕ2/07/24 ENGLISH	
SERIAL NUMBER	020437412	Ver.1.02
א-עחו יו-ערו		NUG INEM

5.5.1 Setting the THD Calculation Method

SET UP 4/5 SYST	'EM	2002/07/24 19:23:55
THD HARM.DISP.ORD. RS-232C	ALL ORDERS	
BAUD RATE TERMINATOR FLOW CONTROL	9600bps CR+LF NONE	
BACKLIGHT BEEP SOUND	AUTO ON 001	
TIME AND DATE LANGUAGE	2002/07/24 ENGLISH	
SERIAL NUMBER	020437412	Ver.1.02 NEXT SCR

F5 NEXT SCR F1 THD-F F2 THD-R

Press the **SET UP** key to display the setting screen.

Press the **F5** (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "THD."

Set the THD calculation method using the function keys.

THD-F	Total Harmonic Distortion (Fundamental reference) Ratio of the harmonic to the fundamental (default)
	Total Harmonic Distortion (RMS reference) Ratio of the harmonic to the total harmonic RMS values, including fundamental and all other harmonics

NOTE

The selected THD calculation method will be used for both the harmonic voltage and harmonic current.

5.5.2 Setting the Harmonic Order for Display

SET UP 4/5 SYS	TEM	2002/07/24 19:24:09
THD HARM. DISP. ORD. RS-232C BAUD RATE TERMINATOR FLOW CONTROL BACKLIGHT BEEP SOUND ID TIME AND DATE	9600bps CR+LF NONE AUTO ON 001 2002/07/24	
LANGUAGE SERIAL NUMBER	ENGLISH 020437412	Ver.1.02
ALL ORD ODD		NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "HARM. DISP. ORD."

Use the function keys to set the harmonic orders to be displayed on the harmonic graph screen and harmonic list screen.

5.5.3 Setting the RS-232C

				1
	SET UP 4/5 SYS	ΓEM	2002/07/24 19:24:16	
	THD HARM. DISP. ORD. RS-232C	THD-F ALL ORDERS		
	BAUD RATE TERMINATOR	9600bps CR+LE		
	FLOW CONTROL BACKLIGHT BEEP SOUND	NONE AUTO ON		
	ID TIME AND DATE	001 2002/07/24	19:22:56	
	LANGUAGE SERIAL NUMBER	ENGLISH 020437412	Ver.1.02	
	change	020131112	NEXT SCR	
SET UP	Press the SET UF	kev to disp	lav the setting	screen.
$\mathbf{\mathbf{\nabla}}$				
F5 NEXT SCR	Press the F5 (NE screen. (3169-20	XT SCR) ke): SET UP 4	ey to display th /4, 3169-21: S	ne system setting SET UP 4/5)
	Move the cursor	to "BAUD R	ATE."	
F1 change	Press the F1 (ch	ange) kev to	display the s	election window.
Ţ	Press the F1 (change) key to display the selection window. 2400 bps, 9600 bps, 19200 bps, 38400 bps			
	Select a baud rate using the cursor keys.			
F1 select	Press the F1 (sel	ect) key.		
	Move the cursor to the "TERMINATOR."			
F1 CR+LF	CR+LF Set the end-of-line code using the function keys.			
F2 CR				
	Move the cursor to "FLOW CONTROL."			
Ĭ	Set the flow control using the function keys.			
F1 NONE				
	F2 XON/XOFF			
F3 RTS/CTS				
F4 ВОТН				

5.5.4 Setting the LCD Backlight

SET UP 4/5 SYS	TEM	2002/07/24 19:24:25
THD HARM.DISP.ORD.	THD-F ALL ORDERS	
RS-232C BAUD RATE TERMINATOR	9600bps CR+LF	
FLOW CONTROL BACKLIGHT	AUTO	
BEEP SOUND ID TIME AND DATE	001 2002/07/24	19.22.56
LANGUAGE SERIAL NUMBER	ENGLISH 020437412	Ver.1.02
OFF ON	AUTO	NEXT SCR

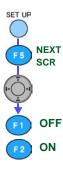
F5 NEXT SCR F1 OFF F2 ON F3 AUTO

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "BACKLIGHT."

Set the LCD backlight using the function keys.


OFF	The backlight remains OFF.
ON	The backlight remains ON.
AUTO	The backlight is automatically turned OFF 5 minutes after the last key operation (Default).

The life of the backlight is approximately 50,000 hours.

5.5.5 Setting the Beep Sound

SET UP 4/5 SYST	EM	2002/07/24 19:24:28
THD	THD-F	
HARM. DISP. ORD.	ALL ORDERS	
RS-232C BAUD RATE	9600bps	
TERMINATOR	CR+LF	
FLOW CONTROL	NONE	
BACKLIGHT	AUTO	
ID	001	
ŤĨME AND DATE	2002/07/24	19:22:56
LANGUAGE	ENGLISH	1 1 00
SERIAL NUMBER	020437412	
OFF ON		NEXT SCR

Press the **SET UP** key to display the setting screen.


Press the F5 (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "BEEP SOUND."

Set the beep sound using the function keys.

OFF	The beep sound is not used.
ON	The beep sound is used (Default).

5.5.6 Setting the ID No.

F5 NEXT SCR F1 -F2 +

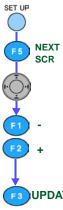
Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "ID."

(Cursor ◀: Moves left to next digit; Cursor ►: Moves right to next digit)

-	Decrements the number.
+	Increments the number.


Setting range: 001 to 999 (Default: 001)

NOTE

Set a number for the 3169-20/21 to identify the instrument. This ID No. is included in the setting data at the head of the stored data. The No. does not have to be set, if not necessary.

5.5.7 Setting the Clock

SET UP 4/5 SYS	TEM	2002/07/24 19:24:36
THD HARM. DISP. ORD. RS-232C	THD-F ALL ORDERS	
BAUD RATE TERMINATOR FLOW CONTROL	9600bps CR+LF NONE	
BACKLIGHT BEEP SOUND	AUTO ON Ø@1	
TIME AND DATE	2002/07/24 ENGLISH	19:22:56
SERIAL NUMBER	020437412	Ver.1.02
- +	UPDATE	NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the **F5** (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "TIME AND DATE."

Set the date and time using the function keys.

-	Decrements the number.
+	Increments the number.

OUPDATE Press the F3 (UPDATE) key.

Set the clock using the time signal or other similar device before starting measurement.

5.5.8 Setting the Language

SET UP

F1

NEXT

SCR

SET UP 4/5 SYST	EM	2002/07/24 19:24:43
THD HARM. DISP. ORD. RS-232C	THD-F ALL ORDERS	
BAUD RATE TERMINATOR FLOW CONTROL	9600bps CR+LF NONE	
BACKLIGHT BEEP SOUND	AUTO ON 001	
TIME AND DATE LANGUAGE	2002/07/24 ENGLIST	
SERIAL NUMBER	020437412	Ver.1.02 NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

Move the cursor to "LANGUAGE."

Change Press the F1 (change) key to display the selection window. JAPANESE, ENGLISH, DEUTSCH (GERMAN), ITALIANO (ITALIAN), CHINESE SIMPLE, CHINESE TRAD, FRANCAIS (FRENCH), ESPANOL (SPANISH), KOREAN

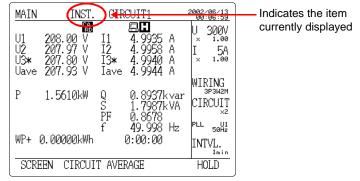
Set the language for display using the cursor keys.

select Press the F1 (select) key.

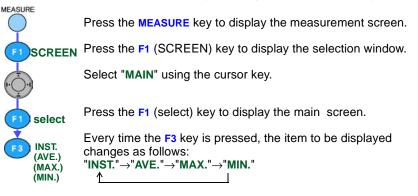
5.5.9 Displaying the Serial No. and Version

SET UP 4/5 SYST	EM 2002/07/24 19:23:55
THD	THD-F
HARM. DISP. ORD.	ALL ORDERS
RS-232C BAUD RATE	9600bps
TERMINATOR	CR+LF
FLOW CONTROL	NONE
BACKLIGHT	AUTO
BEEP SOUND	ON
ID	001
TIME AND DATE	2002/07/24 19:22:56
LANCUACE SERIAL NUMBER	02043741 Ver.1.02
THD-F THD-R	NEXT SCR

Press the **SET UP** key to display the setting screen.


Press the **F5** (NEXT SCR) key to display the system setting screen. (3169-20: SET UP 4/4, 3169-21: SET UP 4/5)

The serial No. and version will appear at "SERIAL NUMBER."


Measurement Method

Please read the Usage Notes (page 7) and Connecting to Lines to be Measured (page 35) before making connections.

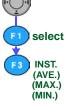
6.1 Measuring the Voltage, Current, and Power (Instantaneous Values)

Switches over to the screen for the data of another circuit (when multiple circuits are measured)

NOTE

- When 3P3W2M is selected as the wiring method, U3 and I3 are obtained by vector calculation. See the Appendix (page 195).
- When 3P3W3M is selected, P1, P2, and P3 are data for reference purposes only.
- When 3P4W or 3P4W4I is selected, the voltage is obtained as the phase to neutral voltage.
- When multiple circuits are measured, use the F2 (CIRCUIT) key to display the data of other circuits.

6.2 Measuring the Power of Each Phase (Instantaneous values)


POWER) CHR	CUIT1	2002/06/13
P1 P2 P3 P	0.8655kW 0.8684kW 0.8673kW 2.6013kW	Q1 Q2 Q3 Q	0. 4963kv 0. 4963kv 0. 4949kv 0. 4964kv 1. 4876kv	ar I 5A ar × 1.00
S1 S2 S3 S	0. 9977kVA 0. 9995kVA 0. 9994kVA 2. 9966kVA	PF1 PF2 PF3 PF	0.8675 0.8688 0.8679 0.8681	WIRING 3P4W CIRCUIT ×1 PLL 50H2
SCRE	EN	AVE	RAGE	HOLD

 Indicates the item currently displayed

Press the **MEASURE** key to display the measurement screen.

SCREEN Press the F1 (SCREEN) key to display the selection window.

Select "POWER" using the cursor key.

MEASURE

Press the F1 (select) key to display the power display screen of each channel.

Every time the F3 key is pressed, the item to be displayed changes as follows:

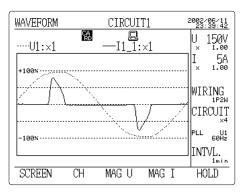
"INST."→"AVE."→"MAX."→"MIN."

NOTE

- When 3P3W2M is selected, the active power (P1, P2), reactive power (Q1, Q2), apparent power (S1, S2), and power factor (PF1, PF2) of each channel are meaningless data. Use the total values of P, Q, S, and PF only. The data of each channel is used as reference data for checking the wiring.
- When 3P3W3M is selected, the active power (P1, P2, P3), reactive power (Q1, Q2, Q3), and apparent power (S1, S2, S3) of each channel are data for reference purposes only.
- When the reactive-power-meter method is OFF, the reactive power (Q1, Q2, Q3) and apparent power (S1, S2, S3) of each channel are obtained by calculation using the line to line voltage.
- When multiple circuits are measured, use the F2 (CIRCUIT) key to display the data of other circuits.

MEASURE

6.3 Displaying a Waveform


Display the voltage and current waveforms of a selected channel.

Press the **MEASURE** key to display the measurement screen.

SCREEN Press the F1 (SCREEN) key to display the selection window.

Select "WAVEFORM" using the cursor key.

Press the F1 (select) key to display the waveform display screen.

select

- The voltage waveform in the 3P3W3M wiring system is the phase voltage waveform referring to a virtual neutral point.
- The waveform of U3 and I3 is not displayed on the screen in the 3P3W2M is set as the wiring method.

(1) Change the Channel to be Displayed.

Every time the F2 (CH) key is pressed, the channel to be displayed is changed as follows.

1P2W	U1, I1 \rightarrow U1, I1 \rightarrow U1, I1 \rightarrow U1, I1 Circuit1 Circuit2 Circuit3 Circuit4 \uparrow
1P3W	U1, I1 \rightarrow U2, I2 \rightarrow U1, I1 \rightarrow U2, I2 Circuit1 Circuit1 Circuit2 Circuit2
3P3W2M	$\begin{array}{c} U1, I1 \rightarrow U2, I2 \rightarrow U1, I1 \rightarrow U2, I2\\ Circuit1 Circuit2 Circuit2\\ & & \\ \end{array}$
3P3W3M	$\begin{array}{c} U1, 11 \rightarrow U2, 12 \rightarrow U3, 13 \\ \uparrow \end{array}$
3P4W	$\begin{array}{c} U1, I1 \rightarrow U2, I2 \rightarrow U3, I3 \\ \uparrow \\ \hline \end{array}$
3P4W4I	$\begin{array}{c} U1, 11 \rightarrow U2, 12 \rightarrow U3, 13 \rightarrow 14 \\ \uparrow \\ \end{array}$

(2) Change the Voltage Y-Axis Magnification.

F3) MA

MAG U Every time the F3 (MAG U) key is pressed, the voltage y-axis magnification is changed as follows: X1/2 \rightarrow X1 \rightarrow X2 \rightarrow X5 \rightarrow X10

(3) Change the Current Y-Axis Magnification.

Every time the F4 (MAG I) key is pressed, the current y-axis magnification is changed as follows: $X1/2 \rightarrow X1 \rightarrow X2 \rightarrow X5 \rightarrow X10$

99

6.4 Measuring the Average, Maximum, and Minimum Values

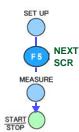
Measures the average, maximum, and minimum values of the voltage, current, power, and harmonic

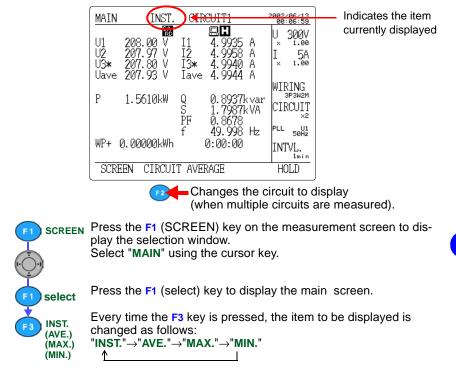
Set the parameters on the measurement setting, data output setting, and save/print items setting screens.

5 Setting Procedure (page 55)

Press the **MEASURE** key to display the measurement screen.

Press the **START/STOP** key to start measurement. When the timeseries measurement has started, the LED lights up, indicating that the 3169-20/21 is performing measurement. When the measurement start method is set to "Time" or "Just", the 3169-20/21 will stand by until the start time (the LED blinks) and start measurement at the start time.


<Ending of Time-Series Measurement>


The time-series measurement stops by the method set on the data-output setting screen. Press the **START/STOP** key to stop the measurement when the stoping method is set to manual, or stop it immediately in any other mode.

- If time-series measurement has been started by pressing the START/STOP key, the average, maximum, and minimum values will be displayed on the screen.
- The display shows the average, maximum, and minimum values of the measurements taken up to the current time from the start of time-series measurement.
- The pieces of data to be stored or printed out are the average, maximum, and minimum values of every interval.
- The average, maximum, and minimum values are not displayed for harmonic measurements.

6.4.1 Displaying the Voltage, Current, and Power (Average, Maximum, and Minimum Values)

When multiple circuits are measured, use the F2 (CIRCUIT) key to display the data of other circuits.

6.4.2 Displaying the Average, Maximum, and Minimum Power Measurements of Each Phase

POWER	INST.	GHRE	UIT1	2002/06/13 00:11:43	Inc
P2 P3	0.8655kW 0.8684kW 0.8673kW 2.6013kW	Q1 Q2 Q3 Q	0. 4963kva 0. 4963kva 0. 4964kva 0. 4964kva 1. 4876kva	U 300V ar × 1.00 ar I 5A ar × 1.00	cu
S1 S2 S3	0. 9977kVA 0. 9995kVA 0. 9994kVA 0. 9994kVA 2. 9966kVA	PF1 PF2 PF3 PF	0.8675 0.8688 0.8679 0.8681	WIRING ^{3P4W} CIRCUIT ^{×1} ^{PLL} 50H ¹	
SCREE	N	AVER	AGE	INTVL. 1min HOLD	

Indicates the item currently displayed

SCREEN Press the F1 (SCREEN) key on the measurement screen to display the selection window.

Select "POWER" using the cursor key.

Press the F1 (select) key to show the power display screen of each channel.

Every time the F3 key is pressed, the item to be displayed is changed as follows:

"INST."→"AVE."→"MAX."→"MIN."

^_____

When multiple circuits are measured, use the F2 (CIRCUIT) key to display the data of other circuits.

6.2 Measuring the Power of Each Phase (Instantaneous values) (page 97)

6.5 Measuring Integrated power

INTEG.	CIRCUIT1 VAR	2002/06/13 00:17:38
RUNNING ACTIVE POWER		U 300V
	P+ 0.07360kWh P0.00000kWh	I 5A × 1.00
REACTIVE POWE		WIRING 3P3W2M CIRCUIT
START TIME STOP TIME ELAPSED TIME	2002/06/13 00:15:00 2002/07/13 00:00:00 0:02:32	PLL U1 50Hz
SCREEN CIRC	JIT	1min HOLD

Measures integrated power (Wh)

 Changes the circuit to display (when multiple circuits are measured).

Set the measurement start/stop methods, interval, medium for saving data, and data output items on the measurement setting, data-output setting, and save/print items setting screens. \$5 Setting Procedure (page 55)

Press the **MEASURE** key to display the measurement screen.

SCREEN Press the F1 (SCREEN) key to display the selection window.

Select "INTEGRATE" using the cursor key.

STOP

SET UP

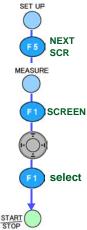
MEASURE

NEXT

SCR

Press the F1 (select) key to show the integrated power display screen.

Press the **START/STOP** key to start integrated power measurement.


- The display shows the total integrated power from the start of time-series measurement.
- When the reactive-power-meter method is OFF, the display does not show the lead (WQ-) values of the integrated reactive power.
- When multiple circuits are measured, use the F2 (CIRCUIT) key to display data of other circuits.

6.6 Performing Demand Measurement

Performs demand measurement, which repeats integration measurement at every demand interval.

DEMAND	CIRCUIT1 WAR	2002/06/13 00:17:58
RUNNING REVIOUS VALUE I	ATEST VALUE	U 300V
1.1003	VP+ 0.01581kWh VP0.00000kWh	I 5A
PF 0.8052	W+ 0.01164kvarh	
MAX DEMAND	W0.00000kvarh	WIRING зрзи2м
	02/06/13 00:16:00 02/06/13 00:17:00	CIRCUIT
STOP TIME 200	02/06/13 00:18:00	PLL U1 50Hz
ELAPSED TIME	0:00:32	INTVL.
SCREEN CIRCUIT		HOLD

 Changes the circuit to display (when multiple circuits are measured).

Set the measurement start/stop methods, interval, medium for saving data, and data output items on the measurement setting, data-output setting, and save/print items setting screens. \$5 Setting Procedure (page 55)

Press the **MEASURE** key to display the measurement screen.

Press the F1 (SCREEN) key to display the selection window.

Select "DEMAND" using the cursor key.

Press the F1 (select) key to show the demand display screen.

Press the **START/STOP** key to start demand measurement.

NOTE

- The display shows the demand at every interval (previous value), the integrated power within each interval (latest value), the maximum demand from the start of time-series measurement, and the time of occurrence.
- When the reactive-power-meter method is OFF, the display does not show the lead (WQ-) values of the integrated reactive power.
- When multiple circuits are measured, use the F2 (CIRCUIT) key to display data of other circuits.

105

6.7 Measuring Harmonic

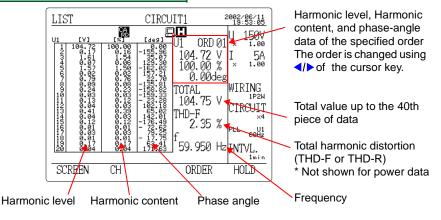
6.7.1 Displaying a Harmonic List

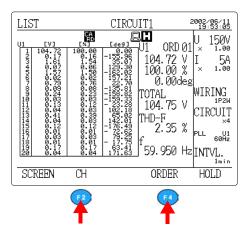
MEASURE

select

Press the **MEASURE** key to display the measurement screen.

ISCREEN Press the F1 (SCREEN) key to display the selection window.


Select "HARMONIC LIST" using the cursor key.


Press the F1 (select) key to display the harmonic list display screen.

Harmonic level	Level of each order of harmonic
Harmonic content	Content of each order of harmonic as a percentage of the fundamental
Harmonic-voltage (current) phase angle	Phase angle of each order of harmonic with respect to the phase of the funda- mental component of U ₁
Harmonic-power phase angle	Power factor of each order of harmonic expressed as an angle

Harmonic-Voltage-Level List Screen

(1) Change the Channel to be Displayed.

Press the F2 (CH) key to display the selection window.


1P2W	U1, I1, P
1P3W	U1, U2, I1, I2, P
3P3W2M	U1, U2, U3, I1, I2, I3, P
3P3W3M	U1, U2, U3, I1, I2, I3, P
3P4W	U1, U2, U3, I1, I2, I3, P
3P4W4I	U1, U2, U3, I1, I2, I3, I4, P

*: When multiple circuits are set, I and P are followed by a circuit number. (Ex., I1_1, I1_2, P_1, P_2)

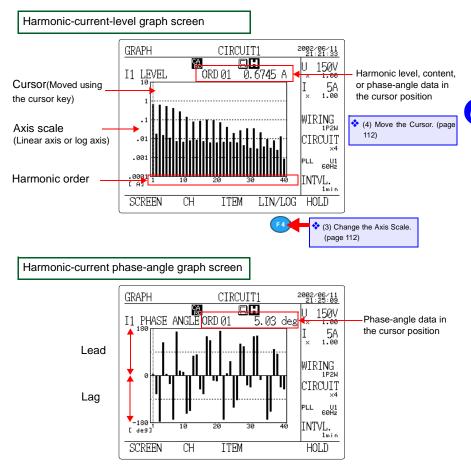
Select a channel to be displayed using the cursor key.

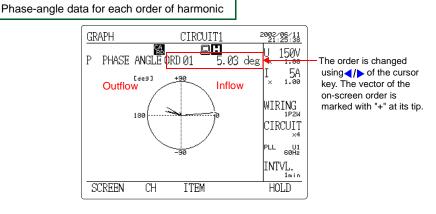
select Press the F1 (select) key.

(2) Change the Order to be Displayed.

If the harmonic order to be displayed is set to "odd order" on the system setting screen, "Order" is not shown on the screen above F4.

6.7.2 Displaying a Harmonic Graph

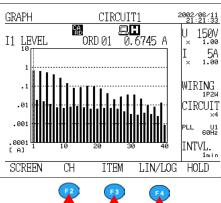

MEASURE Press the **MEASURE** key to display the measurement screen. SCREEN Press the F1 (SCREEN) key to display the selection window. Select "HARMONIC GRAPH" using the cursor key. Press the F1 (select) key to display the harmonic graph display select screen. GRAPH CIRCUIT: 2002/06/11 20:08:58 **90** 104.59 V CAR 150V ORD 01 U1 LEVEL × 5A × 100 10 WIRING 1P2W CIRCUIT 1 . 1 U1 60Hz ٩LL .01 [V] INTVL. 1min SCREEN CH ITEM LIN/LOG HOLD (1) Change the Channel to be (2) Change the Item to be Displayed. (page 111) Displayed. (page 111)


109

NOTE

Graphs of the harmonic level, content, and phase angle are available for the voltage, current, and power.

Harmonic level	Level of each order of harmonic
Harmonic content	Content of each order of harmonic as a percentage of the fundamental
Harmonic-voltage (current) phase angle	Phase angle of each order of harmonic with respect to the phase of the funda- mental component of U ₁
Harmonic-power phase angle	Power factor of each order of harmonic expressed as an angle

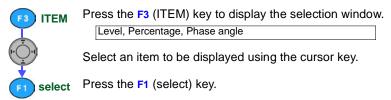


- In the event of inflow, an order of harmonic flows into the load. In the event of outflow, the harmonic flows out from the load.
- The length of the vector represents the ratio of the apparent power of the order of harmonic as a percentage of the apparent power of the fundamental component.
- The x-axis represents active power and the y-axis represents reactive power. They are plotted on log axes.
- When the reactive-power-meter method is turned ON on the measurement setting screen, the harmonic-power phase angle is expressed as a number between 0 and ±180 degrees. When the reactive-power-meter method is OFF, the phase angle is expressed as a number between 0 and ±180 degrees.

(1) Change the Channel to be Displayed.

select

Press the F2 (CH) key to display the selection window.


1P2W	U1, I1, P
1P3W	U1, U2, I1, I2, P
3P3W2M	U1, U2, U3, I1, I2, I3, P
3P3W3M	U1, U2, U3, I1, I2, I3, P
3P4W	U1, U2, U3, I1, I2, I3, P
3P4W4I	U1, U2, U3, I1, I2, I3, I4, P

*: When multiple circuits are set, I and P are followed by a circuit number. (Ex., I1_1, I1_2, P_1, P_2)

Select a channel to be displayed using the cursor key.

Press the F1 (select) key.

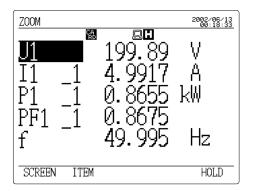
(2) Change the Item to be Displayed.

(3) Change the Axis Scale.

Press the F4 (LIN/LOG) key to change the axis scale.

- When the y-axis represents the linear scale (log scale), if the F4 (LIN/LOG) key is pressed, the scale is changed to log (linear).
- The full scale of the linear axis depends on the range.

(4) Move the Cursor.


Press \checkmark of the cursor key to move the cursor (dotted line) on the screen. The level of each order of harmonic, content, or phase angle at the cursor position is shown as a number.

(5) Change the Harmonic Order to be Displayed.

Select "All order" or "Odd order" as the harmonic order to be displayed.

5.5.2 Setting the Harmonic Order for Display (page 87)

6.8 Displaying on a Zoom Screen

Press the **MEASURE** key to display the measurement screen.

SCREEN Press the F1 (SCREEN) key to display the selection window.

Select "ZOOM" using the cursor key.

select Press the F1 (select) key.

Select an item to be changed using the cursor key.

Press the F2 (ITEM) key to display the selection window.

Select an item to be displayed using the cursor key.

Press the F1 (select) key to display the selected item on a zoom screen.

NOTE

select

ITEM

MEASURE

- Display on a zoom screen is available for the instantaneous value and integrated power in normal measurement only.
- On a zoom screen, the URANGE and IRANGE keys are disabled.

6.9 Holding Displayed Measurement Data

MAIN	INST.	CIR			2002/ 00:	06/13 06:59	Lights up when the
	208.00 V 207.97 V 207.80 V 207.80 V 207.93 V	I1 I2 I3 * Iave	4.9935 4.9958 4.9940 4.9944	A A A A	U × I ×	3007 1.00 5A 1.00	displayed measurement is held
Р	1.5610kW	Q S PF f	0. 89371 1. 79871 0. 8678 49. 998 0:00:00	var	3	CUIT SOHI SOHI SOHI	
SCREI	EN CIRCUI	t avei	RAGE			<u>Imin</u> DLD	

When the F5 (HOLD) key is pressed on a measurement screen, the on-screen measurement data will be held. Pressing the F5 key again releases the Hold.

- The **START/STOP** key is disabled during Hold.
- If the SAVE key is pressed for manual data storage during Hold, the held instantaneous value is saved.
- The automatic-output function during time-series measurement outputs data of every interval, regardless of whether the Hold function is ON.

Loading and Saving Settings and Measured Data

7.1 Types of Files

Types of Files

File	Mode		File Name	Format	Remarks
Setting file			69SET00.SET to 69SET99.SET ########.SET	Text	
Measurement data	Automotio	Standard	69MEAS00.CSV	Text	
file	output interval		to 69MEAS99.CSV	Text	
		Short-term interval	########.CSV 69INST00.BIN to 69INST99.BIN ########.BIN	Binary	
	Manual (No series mea	ot during time- surement)	69MANU00.CSV to 69MANU99.CSV	Text	
Waveform data file	Automatic output	Standard interval	69WAVE00.WUI to 69WAVE99.WUI #######.WUI	Binary	
	Manual (Not during time- series measurement)		69MANU00.WUI to 69MANU99.WUI	Binary	
Backup data file	Automatic output	Standard interval (measurement data)	69BACK00.CSV to 69BACK99.CSV	Text	Stored in the interval memory only
		Standard interval (waveform data)	69BACK00.WUI to 69BACK99.WUI	Binary	-
		Short-term interval (measure- ment data)	69BACK00.BIN to 69BACK99.BIN	Binary	
Screen copy file	Manual		69BMP00.BMP to 69BMP99.BMP	BMP	

7.1 Types of Files

- ######## represents a file name set by a user.
- The same file cannot be stored in both the PC card and the internal memory.
- When the medium for saving data is set to PC card, if the PC card is not installed or the 3169-20/21 fails to write data to the PC card, the data will be stored in the internal memory as a backup data file (automatic output data only).
- The PC card and internal memory each hold up to 100 files: measurement data files, waveform data files, backup data files, and screen copy files.

The PC card holds up to 10 setting files. The internal memory holds up to 5 setting files.

- When reading a file in binary format into commercially available spreadsheet software, convert the file into a text file. The CD-R supplied with the 3169-20/21 contains the conversion software.
- For the headers of measurement data, see the list in the "Appendix" (page 197).

Status Data (STATUS)

Status data is added to measurement data files (standard interval). Status data consists of a 10-bit binary number, as shown below. It indicates the occurrence of over-range, excessive input (excessive crest factor), power outage, or other situations that may occur during time-series measurement.

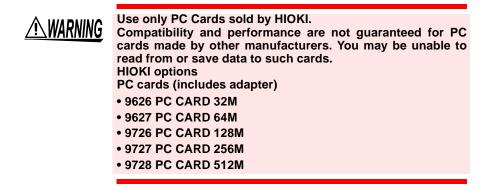
Bit	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Item	PLL	pd	or	ovl4	ovl3	ovl2	ovl1	ovU3	ovU2	ovU1

ov: Excessive input: The file contains data with an excessive crest factor.

or: Over-range: The file contains data exceeding 130% of the range.

pd: A power outage has occurred.

PLL: PLL unlock: PLL unlock has occurred.

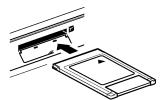

For example, if a power outage occurred during time-series measurement, the status data will be shown as "0100000000."

The zero of the upper bit may not be indicated on commercially available spreadsheet software.

7.2 Using a PC Card

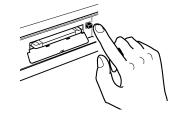
7.2.1 Selecting a PC Card

- PC Cards should always be formatted before use (format the Card within the instrument.)
- When formatting a PC card on a PC, use the FAT-16 format. Formatting a card in FAT-32 format may result in incompatibility problems.
- Do not handle Cards in dusty environments, or where caustic vapors may be present. The connector contacts can be fouled in such conditions.
- 9729 PC Card 1G is not compatible with this instrument.


7.2.2 Inserting and Removing the PC Card

<u>ACAUTION</u>

- The PC Card or the instrument can be damaged if the card is inserted forcefully in the wrong direction.
- Never eject a PC Card while it is being accessed by the instrument. Data on the PC Card may be lost.
- Keep the cover closed when a PC Card is not installed.
- When the instrument is to be transported, remove the PC Card and close the cover.


Inserting and Removing the PC Card

Inserting the PC Card

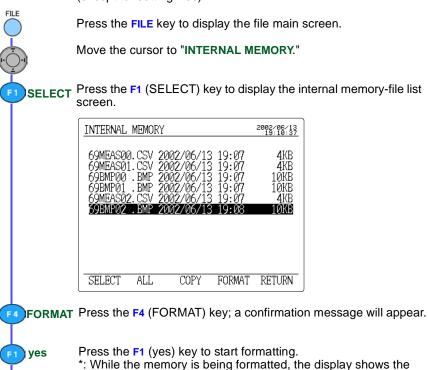
Open the cover and insert the PC card with the arrow facing up and in the direction of the PC card slot, as far as it will go.

Removing the PC Card

Press the eject button and pull out the PC card.

7.3 File Operation

Press the FILE key to display the file main screen.


FILE MAIN	2002/07/24 15:22:02
INTERNAL SETTINGS INTERNAL MEMORY PC CARD FIRMWARE UPDATE	
SELECT	
INTERNAL SETTINGS	Loading, saving, deleting, and copying setting files in the internal memory
INTERNAL MEMORY	Formatting and copying the internal memory
PC CARD	Deleting files, loading and saving set- ting files on the PC card, and format- ting the PC card
FIRMWARE UPDATE	Upgrading the 3169-20/21

NOTE

The file list screen shows only the files with the same extension as that of the files used on the 3169-20/21.

7.3.1 Initializing (Formatting) the Internal Memory

Use this function to delete files from the internal memory. In the internal memory, individual files cannot be deleted separately (except for setting files).

: While the memory is being formatted, the display shows the message "Busy... Please wait." (The message disappears upon completion of formatting.)

Press the F5 (RETURN) key to return to the file main screen.

RETURN

F 5

- If the internal memory is formatted, all files in the memory will be deleted. The deleted files cannot be restored.
- Even if data is to be saved on the PC card, we recommend that the internal memory be formatted before time-series measurement is begun, in order to secure space in the memory for backup files in case data fails to be saved on the PC card. If the internal memory is full, data unable to be saved on the PC card will not be backed up.

7.3.2 Initializing (Formatting) the PC Card

The PC card must be formatted when it is used for the first time after purchase. In addition, format the PC card when all files on it are to be deleted.

Press the FILE key to display the file main screen.

Move the cursor to "PC CARD."

Press the F1 (SELECT) key to display the PC card-file list screen.

PC CARD	2002/06/13 20:53:20
59BMP00 .BMP 2002/06/13 00:01 69BMP01 .BMP 2002/06/13 00:05 69BMP02 .BMP 2002/06/13 00:52 69MEAS00.CSV 2002/06/13 00:52 69MEAS00.CSV 2002/06/13 00:07 MAINMIN .BMP 2002/06/13 00:12 69MEAS01.CSV 2002/06/13 00:12 69MEAS01.CSV 2002/06/13 00:12 69BMP03 .BMP 2002/06/13 10:11 69MEAS02.CSV 2002/06/13 00:14	10KB 10KB 2KB 10KB 10KB 10KB 2KB 10KB 10KB 2KB
SET.SAVE LOAD FORMAT <	RETURN

If (\rightarrow) is shown above the F4 key, use the F4 (\rightarrow) key to change the functions for the function keys.

FORMAT Press the F3 (FORMAT) key; a confirmation message will appear.

Press the F1 (yes) key to start formatting.

*: While the memory is being formatted, the display shows the message "Busy... Please wait." (The message disappears upon completion of formatting.)

RETURN Press the F5 (RETURN) key to return to the file main screen.

NOTE

yes

FILE

SELECT

If the PC card is formatted, all files on the PC card will be deleted. The deleted files cannot be restored.

7.3.3 Saving a Setting File

Save the current settings of the 3169-20/21 in the internal memory or on the PC card.

(1) Save in the Internal Memory.

Press the FILE key to display the file main screen.

Move the cursor to "INTERNAL SETTINGS."

Press the F1 (SELECT) key to display the internal setting-file list SELECT screen.

INTERNAL	SETT	INGS		2002/06/13 19:10:04
AB CC Ø1 KLMNO	. SET	2002/06/13 2002/06/13 2002/06/13 2002/06/13	19:08 19:09 19:09 19:09	1KB 1KB 1KB 1KB
			19.09	
SET. SAVE	LOAI) DELETE	<	RETURN

If (\to) is shown above the F4 key, use the F4 (\to) key to change the functions for the function keys.

Press the $\ensuremath{\texttt{F1}}$ (SET. SAVE) key to display the file-name input window.

Set the file name using the cursor and function keys.

input

BS

enter

SET.

SAVE

F

F 2

F 3

F 5

Cursor	Select characters
input	Inputs the selected character.
BS	Backspace (deletes the selected character)

Press the $\ensuremath{\mbox{F3}}$ (enter) key to save the setting file in the internal memory.

RETURN Press the F5 (RETURN) key to return to the file main screen.

- The extension for setting files is ".SET" (the extension is added automatically).
- If the F3 (enter) key is pressed without setting a file name, the 3169-20/21 automatically names the file. "69SETXX.SET" (XX: 00 to 99)
- The internal memory holds up to 5 setting files.

(2) Save on the PC Card.

FILE

F4 → SET.

SAVE

input BS

enter

RETURN

SELECT

Press the FILE key to display the file main screen.

Move the cursor to "PC CARD."

Press the F1 (SELECT) key to display the PC card-file list screen.

PC CARD	2002/06/13 18:50:16
59BMP00 BMP 2002/06/13 00:01 69BMP01 BMP 2002/06/13 00:05 69BMP02 BMP 2002/06/13 00:05 69MEAS00.CSV 2002/06/13 00:07 MAINMIN BMP 2002/06/13 00:10 FOWERAVE BMP 2002/06/13 00:12 69MEAS01.CSV 2002/06/13 00:12 69MEAS01.CSV 2002/06/13 00:12 FOWERMIN.BMP 2002/06/13 00:12 69BMP03 BMP 2002/06/13 10:11 69MEAS02.CSV 2002/06/13 00:14	10KB 10KB 2KB 10KB 10KB 10KB 2KB 10KB 10KB 2KB
SET. SAVE LOAD FORMAT <	RETURN

If (\to) is shown above the F4 key, use the F4 (\to) key to change the functions for the function keys.

Press the $\ensuremath{\texttt{F1}}$ (SET. SAVE) key to display the file-name input window.

Set the file name using the cursor and function keys.

Cursor	Select characters
input	Inputs the selected character.
BS	Backspace (deletes the selected character)

Press the F3 (enter) key to save the setting file in the PC card.

Press the F5 (RETURN) key to return to the file main screen.

NOTE

- The extension for setting files is ".SET" (the extension is added automatically).
- If the F3 (enter) key is pressed without setting a file name, the 3169-20/21 automatically names the file. "69SETXX.SET" (XX: 00 to 99)
- The PC card holds up to 5 setting files.

7.3.4 Loading a Setting File

Load a setting file on the PC card or in the internal memory into the 3169-20/21, and set the instrument with the settings.

(1) Load a File in the Internal Memory.

,		•			
FILE	Press the FILE key to display the file main screen.				
	Move the cursor to "INTERNAL SETTINGS."				
<u> </u>	Press the F1 (SELECT) key to	display the internal setting-file list			
F1 SELECT	r screen.				
	INTERNAL SETTINGS	2002/06/13 19:10:04			
	AB .SET 2002/06/13 19:00 CC .SET 2002/06/13 19:0 01 .SET 2002/06/13 19:0 KLMNO .SET 2002/06/13 19:0	8 1KB 9 1KB 9 1KB 9 1KB 9 1KB			
	SET. SAVE LOAD DELETE <	RETURN			
F 4 →	If (\rightarrow) is shown above the F4 k the functions for the function k	ey, use the F4 ($ ightarrow$) key to change keys.			
	Select a file to be load using the	he cursor key.			
F2 LOAD	Press the F2 (LOAD) key; a co	onfirmation message will appear.			
F1 yes	Press the F1 (yes) key to load ory.	the setting file in the internal mem-			
	Press the F5 (RETURN) key to N	o return to the file main screen.			
NOTE	Files cannot be load during ti	me-series measurement.			

(2) Load a File on the PC Card.

Press the FILE key to display the file main screen.

Move the cursor to "PC CARD."

Press the F1 (SELECT) key to display the PC card-file list SELECT screen.

PC CARD	2002/06/14 00:04:20
69BMP14 .BMP 2002/06/13 19:06 69BMP15 .BMP 2002/06/13 20:53 69BMP16 .BMP 2002/06/13 19:08 69BMP17 .BMP 2002/06/13 19:08 69BMP18 .BMP 2002/06/13 19:09 69BMP21 .BMP 2002/06/13 19:09 912 .SET 2002/06/14 00:03 69BMP23 .BMP 2002/06/13 19:10 CARDDEL .BMP 2002/06/13 20:55 CARDSAVE.BMP 2002/06/13 18:50	10KB 10KB 10KB 10KB 10KB 10KB 10KB 10KB
SET. SAVE LOAD FORMAT <	RETURN

If (\rightarrow) is shown above the F4 key, use the F4 (\rightarrow) key to change the functions for the function keys.

Select a file to be load using the cursor key.

Press the F2 (LOAD) key; a confirmation message will appear.

Press the F1 (yes) key to load the setting file on the PC card.

Press the F5 (RETURN) key to return to the file main screen.

LOAD

yes

Files cannot be load during time-series measurement.

7.3.5 Deleting a File

(1) Delete a Setting File from the Internal Memory.

Press the FILE key to display the file main screen.

Move the cursor to "INTERNAL SETTNGS."

Press the F1 (SELECT) key to display the internal setting-file list SELECT screen.

INTERNAL	SETT	INGS		2002/06/13 23:49:41
AB CC 01 *KLMNO	. SET . SET	2002/06/13	19:08 19:09 19:09 19:09	1KB 1KB 1KB 1KB
		2002/00/13	17.07	IND
SET. SAVE	LOAI	D DELETE	<	RETURN

If (\leftarrow) is shown above the F4 key, use the F4 (\leftarrow) key to change the functions for the function keys.

Select a file to be deleted from the file list.

÷				
SELECT		SELECT	Select one file.	
		ALL Select all files.		
F2 ALL	(th	ne selected f	le will be marked with an asterisk "*" to its left)	
F 4 →	Us	se the F4 (\rightarrow)) key to change the functions for the function keys.	
DELETE	_			
Ĭ	Pr	ess the F3 (I	DELETE) key; a confirmation message will appear.	
F1 yes	Pr	ess the F1 (y	ves) key to delete the selected file.	
	Pr	ess the F5 (F	RETURN) key to return to the file main screen.	

While the cursor is on the selected file, if the F1 (SELECT) or F2 (ALL) key is pressed again, the selection is canceled.

(2) Delete a File from the PC Card.

Press the FILE key to display the file main screen.

Move the cursor to "PC CARD."

Press the F1 (SELECT) key to display the PC card-file list screen.

PC CARD		2002/06/13 20:55:03
*59BMP00 .BMP 69BMP01 .BMP 69BMP02 .BMP 69MEAS00.CSV MAINMIN .BMP POWERAVE.BMP 69MEAS01.CSV POWERMIN.BMP 69BMP03 .BMP 69MEAS02.CSV	2002/06/13 00:0 2002/06/13 00:05 2002/06/13 00:05 2002/06/13 00:05 2002/06/13 00:05 2002/06/13 00:12 2002/06/13 00:12 2002/06/13 10:11 2002/06/13 00:14	5 10KB 2 10KB 7 2KB 3 10KB 2 10KB 2 10KB 2 2KB 2 10KB 1 10KB
SELECT ALL	DELETE>	RETURN

If (\leftarrow) is shown above the F4 key, use the F4 (\leftarrow) key to change the functions for the function keys.

Select a file to be deleted from the file list.

7

FCT	SELECT	Select one file.
	ALL	Select all files.
1	(the selected t	file will be marked with an asterisk "*" to its left)

(the selected file will be marked with an asterisk "*" to its left)

DELETE Press the F3 (DELETE) key; a confirmation message will appear.

Press the F1 (yes) key to delete the selected file.

RETURN Press the F5 (RETURN) key to return to the file main screen.

While the cursor is on the selected file, if the F1 (SELECT) or F2 (ALL) key is pressed again, the selection is canceled.

7.3.6 Copying a File in the Internal Memory to a PC Card

Ourt	A
FILE	Press the FILE key to display the file main screen.
F1 SELECT	Move the cursor to "INTERNAL MEMORY." Press the F1 (SELECT) key to display the internal memory-file list screen.
	INTERNAL MEMORY 2002/07/25
	69MEAS00.CSV 2002/07/25 22:12 3KB 69INST00.BIN 2002/07/25 22:13 18KB 69MEAS01.CSV 2002/07/25 22:13 2KB 69MEAS02.CSV 2002/07/25 22:13 5KB 69MEAS02.CSV 2002/07/25 22:13 10KB
	69BMP01 .BMP 2002/07/25 22:13 10KB *69BMP02 .BMP 2002/07/25 22:13 10KB SELECT ALL COPY FORMAT RETURN
	DEFECT THE COLL FORMULT RETORN
	Select a file to be copied from the file list.
	SELECT Select one file.
F1 SELECT	ALL Select all files.
F2 ALL	(the selected file will be marked with an asterisk "*" to its left)
ГЗ СОРҮ	Press the F3 (COPY) key. A confirmation message will appear.
F1 yes	Press the ${\rm F1}$ (yes) key to copy the selected file in the interval memory to the PC card.
	Press the F5 (RETURN) key to return to the file main screen.
NOTE	 While the cursor is on the selected file, if the F1 (SELECT) or F2 (ALL) key is pressed again, the selection is canceled.s If the same file name exists on the PC card, the file on the PC

card will be overwritten.

129

7.4 Saving Measurement Data

7.4.1 Automatic Storage of Measurement Data

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data-output setting screen.

Set the time-series measurement start method, stop method, interval, data-output file name, and medium for saving data (PC card or internal memory (1 MB)).

5.3 Setting on the Data Output Setting Screen (DATA OUTPUT) (page 68)

SET UP 2/5 DATA	OUTPUT	2002/07/24
MEAS. START	MANUAL	20.01.11
MEAS. STOP	MANUAL	
INTERVAL TIME	1 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	JUST	NEXT SCR

130 7.4 Saving Measurement Data

Press the **F5** (NEXT SCR) key to display the save/print items setting screen. Set the items to be stored.

5.4 Setting on the Save/Print Items Setting Screen (SAVE, PRINT ITEMS) (page 79)

<u>SET UP 3/5 SAVE</u>	, PRIM	NT ITE NO.	MS OF I		25/13 24:05 25
NORM. MEAS.	ON	INST. AVE.	OFF]	20
HARMONIC	OFF	MAX. MIN.	OFF OFF		
INTEG. & DEM.	ON]		1	
SAVE TIME AVAIL.	114	4d 4	h 4m	Øs	
OFF ON	11-	19 1	<u>-</u>	NEXT	SCR

Press the **MEASURE** key to display the measurement screen.

Press the **START/STOP** key to start time-series measurement. Measurement data is saved in the set medium for saving data at every interval.

Storable Data According to Interval Setting

Interval setting	Normal measurement data	Integrated power/demand measurement data	Harmonic measurement data
1/2/5/10/15/30/60 minutes	Yes	Yes	Yes
1/2/5/10/15/30 seconds	Yes	Yes	No
All wave/100/200/ 500 ms	Yes (Instantaneous values only) Binary data	No	No

Storable Time

All Normal Measurement Items ON and Integrated power/Demand ON

Wiring	1P2W X 4	1P3W X 2	3P3W2M X 2	3P3W3M, 3P4W	3P4W4I
No. of Data Items	160	180	196	118	122
PC card 128 MB Interval time					
1 minute	45 days	41 days	37 days	62 days	60 days
2 minutes	91 days	82 days	75 days	125 days	121 days
5 minutes	229 days	205 days	188 days	313 days	303 days
10 minutes	366 days	366 days	366 days	366 days	366 days
15 minutes	366 days	366 days	366 days	366 days	366 days
30 minutes	366 days	366 days	366 days	366 days	366 days
60 minutes	366 days	366 days	366 days	366 days	366 days
Internal memory Interval time					
1 minutes	8 hours	7 hours	7 hours	12 hours	11 hours
2 minutes	17 hours	15 hours	14 hours	24 hours	23 hours
5 minutes	1.8 days	1.6 days	1.5 days	2.5 days	2.4 days
10 minutes	3 days	3 days	3 days	5 days	4 days
15 minutes	5 days	4 days	4 days	7 days	7 days
30 minutes	11 days	9 days	9 days	15 days	14 days
60 minutes	22 days	19 days	18 days	30 days	29 days

All Normal Measurement Items ON and Integrated power/Demand ON, All Harmonic Items ON (Interval: 1 minute)

Wiring	1P2W X 4	1P3W X 2	3P3W2M X 2	3P3W3M, 3P4W	3P4W4I
No. of Data Items	4536	4076	5556	3530	4022
PC card 128 MB	37 hours	40 hours	30 hours	46 hours	40 hours
Internal memory	16 minutes	19 minutes	13 minutes	22 minutes	19 minutes

ſ	Wiring	1P2W X 4	1P3W X 2	3P3W2M X 2	3P3W3M, 3P4W	3P4W4I
	No. of Data Items	160	180	196	118	122
ľ	PC card 128 MB	18 hours	16 hours	15 hours	25 hours	24 hours
	Internal memory	8 minutes	7 minutes	7 minutes	12 minutes	11 minutes

All Normal Measurement Items ON and Integrated power/Demand ON, All Harmonic Items OFF (Interval: 1 second)

Normal Measurement Instantaneous Value Only

Wiring	1P2W X 4	1P3W X 2	3P3W2M X 2	3P3W3M, 3P4W	3P4W4I
No. of Data Items	25	18	21	14	15
PC card 128 MB Interval time					
All wave	4 hours	6 hours	5 hours	7 hours	7 hours
100ms	29 hours	38 hours	34 hours	46 hours	44 hours
200ms	59 hours	77 hours	68 hours	93 hours	88 hours
500ms	147 hours	192 hours	170 hours	233 hours	221 hours
Internal memory					
Interval time					
All wave	2 minutes	3 minutes	2 minutes	3 minutes	3 minutes
100ms	14 minutes	18 minutes	16 minutes	22 minutes	21 minutes
200ms	28 minutes	37 minutes	33 minutes	45 minutes	43 minutes
500ms	72 minutes	94 minutes	83 minutes	113 minutes	109 minutes

- Short-term interval (All wave/100 ms/200 ms/500 ms) data and harmonic waveform data are saved in binary format files. Binary format files must be converted to text files to be read into commercially available spreadsheet software. The conversion software is provided in the supplied CD-R.
- If the number of output-data items on the save/print items setting screen exceeds 256, it may not be possible to read all data into commercially available spreadsheet software. Make sure that the number of output-data items does not exceed 256 when they are to be read into such spreadsheet software.

133

7.4.2 Saving Measurement Data Manually

Save instantaneous data manually.

F5 NEXT

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data-output setting screen.

Set the medium for saving data (PC card or internal memory (1 MB)).

5.3 Setting on the Data Output Setting Screen (DATA OUTPUT) (page 68)

SET UP 2/5 DATA	OUTPUT	2002/07/24 20:01:47
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	1 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	JUST	NEXT SCR

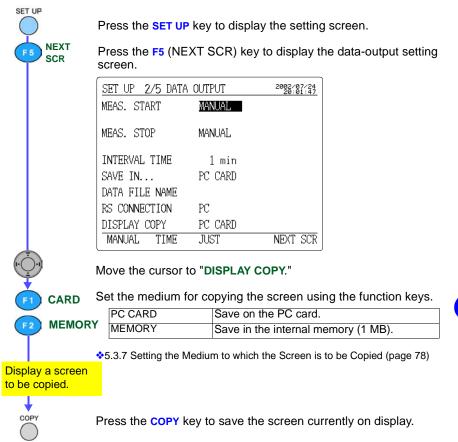
Press the F5 (NEXT SCR) key to display the save/print items setting screen.

To output harmonic measurement data, set the items to be stored on the harmonic-measurement detail setting screen.

5.4 Setting on the Save/Print Items Setting Screen (SAVE, PRINT ITEMS) (page 79)

SET UP 3/5 SAVE	, PRI		ITEN NO.		IT	2003/0 15:2 EMS	25/13 24:05 25
NORM. MEAS.	ON	IN: AV]		10 10	FF N		
HARMONIC	OFF	MA) MIN	X. N.		FF FF		
INTEG.& DEM.	ON]					
SAVE TIME AVAIL. OFF ON	114	4d	41	n 4	ŀm	Øs NEXT	SCR

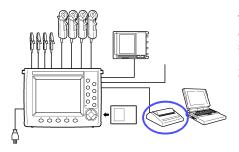
Press the **MEASURE** key to display the measurement screen.


Press the **SAVE** key to save the measurement data manually.

- Data cannot be saved manually during time-series measurement.
- The files are named automatically. Measurement data: 69MANUXX.CSV (XX: 00 to 99) Waveform data: 69MANUXX.WUI (XX: 00 to 99) binary data
- The instantaneous values are saved regardless of the ON/OFF setting of the instantaneous, average, maximum, and minimum values on the save/print items setting screen. In the case of harmonic measurement data, the instantaneous data of the items selected on the save/print items setting screen are saved.

7.5 Copying Screen

Copy the screen onto the PC card or to internal memory.



Using a Printer

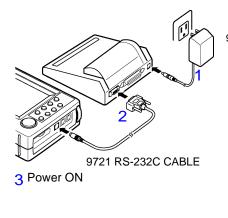
- To avoid damaging the instrument and printer, do not connect and disconnect the connectors when the power is on.
- As much as possible, avoid printing in hot and humid environments. Otherwise, printer life may be severely shortened.

The instrument can produce hard copies of the screen and print measurement data on the Model 9442 PRINTER connected to the RS-232C interface.

9442 PRINTER (option)

The following items are required to use the 9442 PRINTER.

- 9442 PRINTER
 (with 1 roll of thorr
- (with 1 roll of thermally sensitized paper supplied)
- 9443-02 AC ADAPTER (AC230 V, 50 Hz)
- 9443-03 AC ADAPTER (AC120 V, 60 Hz)
- 1196 RECORDING PAPER (thermally sensitized paper 112 x 25 m, 10 rolls)
- 9721 RS-232C CABLE (for printer)



- For printer handling, see the operations manual for the printer.
- Use 1196 RECORDING PAPER or the equivalent for the printer.

8.1 Connecting the Printer

Connecting the 9442 PRINTER to the 3169-20/21

Required for connection: 9721 RS-232C CABLE

9443-03 AC ADAPTER

- 1. Connect the 9443-02/03 AC ADAPTER to the 9442 PRINTER.
- 2. Connect the RS-232C connector of the 3169-20/21 and the serial connector of the printer using the 9721 RS-232C CABLE.
- **3.** Turn the instrument and printer on.

Setting the 9442 PRINTER

The 9442 printer is factory-set for use with the 3166 or 3169-20/21 CLAMP ON POWER HITESTER. When the printer is used with the 3169-20/21, it is not necessary to edit the settings. The software DIP switches of the 9442 printer are set as shown below. For the DIP-switch setting procedure, see the DPU-414 operations manual supplied with the 9442 printer.

(1) Software DIP SW1

Switch No.	Setting	Function	ON	OFF
1	OFF	Input method	Parallel	Serial
2	ON	Printing speed	High speed	Low speed
3	ON	Auto-loading	Enabled	Disabled
4	OFF	CR function	Carriage return and line feed	Carriage return
5	ON	Setting command	Enabled	Disabled
6	OFF	Printing density selecti	on 100%	
7	ON			
8	ON			

(2) Software DIP SW2

Switch No.	Setting	Function	ON	OFF
1	ON	Printing mode	Normal printing (40 columns)	Condensed printing (80 col- umns)
2	ON	User-defined charac- ter backup	Enabled	Disabled
3	ON	Character type	Ordinary	Special
4	ON	Zero font	0	φ
5	ON	Japanese - Internation	al Character Set	
6	ON			
7	ON			
8	ON			

The 3169-20/21 automatically turns off the printing-mode switch (condensed printing).

(3) Software DIP SW3

Switch No.	Setting	Function	ON	OFF
1	ON	Data bit length	8 bits	7 bits
2	ON	Parity	Without	With
3	ON	Parity condition	Odd	Even
4	OFF	Flow control	H/W BUSY	XON/XOFF
5	OFF	Baud rate: 9600 bps		
6	ON	-		
7	ON	-		
8	ON	-		

8.2 Setting the Printer

8.2.1 Setting the Device to Be Connected to the RS-232C

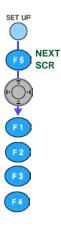
SET UP 2/5 DATA	OUTPUT	2002/07/24 19:18:53
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	30 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
PC PRINTER		NEXT SCR

F5 NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data-output setting screen.

Move the cursor to "RS CONNECTION."


NTER Press the F2 (PRINTER) key to set the device to be connected to the RS-232C to printer.

- The device to be connected to the RS-232C is set to the PC by default.
- When the interval is set to 30 seconds or less, measurement data cannot be output to a printer.
- To output measurement data to a printer automatically, set the interval to 1 minute or more.

8.2.2 Setting the RS-232C

SET UP 4/5 SYST	ΈM	2002/07/24 19:24:16
THD HARM. DISP. ORD. RS-232C	THD-F ALL ORDERS	
BAUD RATE TERMINATOR FLOW CONTROL	9600bps CR+LF NONE	
BACKLIGHT BEEP SOUND	AUTO ON	
TIME AND DATE	001 2002/07/24 ENGLISH	
SERIAL NUMBER	020437412	
change		NEXT SCR

Press the **SET UP** key to display the setting screen.

Press the ${\bf F5}$ (NEXT SCR) key to display the system setting screen.

Move the cursor to "RS-232C."

Set the following using the function keys.

Setting Item	Presets
BAUD RATE	9600 bps
TERMINATOR	CR+LF
FLOW CONTROL	XON/XOFF

5.5.3 Setting the RS-232C (page 88)

8.3 Automatic Output of Measurement Data to the Printer

Press the SET UP key to display the setting screen. Set the printer. *8.2 Setting the Printer (page 140)

F5 NEXT SCR

SET UP

Press the F5 (NEXT SCR) key to display the data-output setting screen.

Set the time-series measurement start/stop methods and interval. \$5.3 Setting on the Data Output Setting Screen (DATA OUTPUT) (page 68)

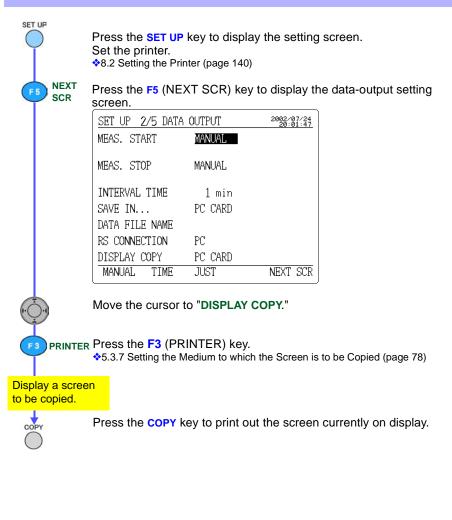
SET UP 2/5 DATA	OUTPUT	2002/07/24 20:01:47
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	1 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	JUST	NEXT SCR

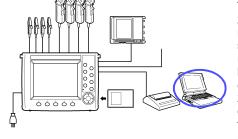
Press the F5 (NEXT SCR) key to display the save/print items setting screen. Set the items to be printed out.

♦5.4 Setting on the Save/Print Items Setting Screen (SAVE, PRINT ITEMS) (page 79)

<u>SET UP 3/5 SAVE</u>	, PRIM		MS OF II	2003/0 15:2 TEMS	25/13 24:05 25
NORM. MEAS.	ON	INST. AVE.	OFF ON]	
HARMONIC	OFF	MAX. MIN.	OFF OFF	1	
INTEG.& DEM.	ON]		_	
SAVE TIME AVAIL.	114	4d 4	h 4m	0s NEXT	SCR

Press the **MEASURE** key to display the measurement screen.


Press the **START/STOP** key to start time-series measurement. Measurement data will be printed out on the printer at every interval.


- When the interval is set to 30 seconds or less, data cannot be output to the printer automatically.
 - If many items are set to be printed, printing may not be completed within the interval. If many items are set to print, printing may not be completed within the interval. In this case, the interval data outputted when the buffer mem-

ory (about 28KB) of the printer is full is not printed.

8.4 Copying a Screen to the Printer

Using the Instrument with a Computer

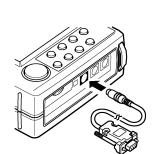
The 3169-20/21 includes an RS-232C interface as standard equipment. Using the RS-232C interface, settings of the 3169-20/21 can be made and measurement data can be acquired on a PC. This chapter explains how to connect the 3169-20/21 to a PC. For details including communications commands, see the RS-232C instruction manual (CD-R version).

For communications using the RS-232C interface, the optional 9612 RS-232C cable is required.

9.1 RS-232C Connection

<u>MWARNING</u>

- To avoid electric shock, always remove the power cord from the instrument and disconnect any test leads before connecting the RS-232C cable to the instrument.
- The instrument and modem should be turned off before connecting them.
- Do not connect or disconnect the cable with power on. Otherwise, the devices could be damaged.



Align the 9612 RS-232C cable with the connector of the 3169-20/21, and insert the cable straight in. To prevent damage and contact failure, do not exert excessive force on the cable.

- Always tighten the screws when connecting the RS-232C cable.
- If the connector of the PC is not a D-sub9-pin connector, use a commercially available conversion adapter.

Connection to the PC to the 3169-20/21

To connect the 3169-20/21 to a PC, you need the optional 9612 RS-232C cable. The 9612 RS-232C cable is a cross cable.

- 1. Turn off the power to the 3169-20/ 21 and the PC.
- 2. Using the 9612 RS-232C cable, connect the RS-232C connectors of the 3169-20/21 to the PC.

9612 RS-232C CABLE (cross cable)

Pin	Functions	CCITT	EIA	JIS	Signal Name
1 111	T UTICIIOTIS	Circuit No.	Code Addr.	Code Addr.	Signal Name
2	Receive Data	104	BB	RD	RxD
3	Send Data	103	BA	SD	TxD
5	Signal Ground	102	AB	SG	GND
7	Request to Send	105	CA	RS	RTS
8	Clear to Send	106	CB	CS	CTS

RS-232C connector

SET UP

NEXT

SCR

PC

9.2 Setting the RS-232C

Set the RS-232C. For communications between the 3169-20/21 and the PC, the 3169-20/21 must have the same RS-232C settings as those of the PC.

Press the **SET UP** key to display the setting screen.

Press the F5 (NEXT SCR) key to display the data-output setting screen.

SET UP 2/5 DATA	OUTPUT	2002/07/24 20:01:47
MEAS. START	MANUAL	
MEAS. STOP	MANUAL	
INTERVAL TIME	1 min	
SAVE IN	PC CARD	
DATA FILE NAME		
RS CONNECTION	PC	
DISPLAY COPY	PC CARD	
MANUAL TIME	JUST	NEXT SCR

Move the cursor to "RS CONNECTION."

Press the F1 (PC) key to set the device to be connected to the RS-232C to PC.

Press the F5 (NEXT SCR) key to display the system setting screen.

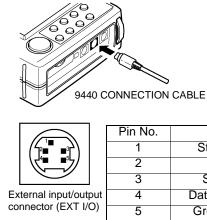
SET UP 4/5 SYST	'EM	2002/07/24 19:23:55
THD HARM. DISP. ORD.	THD-F ALL ORDERS	
RS-232C BAUD RATE	9600bps	
TERMINATOR FLOW CONTROL	CR+LF NONE	
BACKLIGHT BEEP SOUND	AUTO	
ID TIME AND DATE	001 2002/07/24	10.22.56
LANGUAGE SERIAL NUMBER	ENGLISH 020437412	
THD-F THD-R	02043741Z	NEXT SCR

Move the cursor to an RS-232C setting item to be changed. Set the RS-232C setting items.

Setting Item	Presets
BAUD RATE	2400, 9600, 19200, 38400 bps
TERMINATOR	CR+LF, CR
FLOW CONTROL	OFF, XON/XOFF, RTS/CTS, Both

- In the event of an over-run error or framing error, select a lower baud rate.
- Do not edit the settings during communications with the 3169-20/21.

5.5.3 Setting the RS-232C (page 88)



Using the External Input/Output Terminal

The external input/output terminal uses 0/5-V logic signals or short/ open contact signals to control the 3169-20/21. For connection, the optional 9440 cable is required.

10.1 Connecting the External Input/Output Terminal

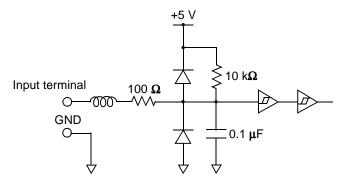
Connecting the External Input/Output Terminal

Insert the 9440 connection cable into the external input/output terminal (EXIT I/O), aligning the connector guide grooves (the connector is equipped with a lock). When removing the connection cable, hold it by the plastic part.

		Pin No.	Signal Name	9440 Cable Color
		1	Start/stop (input)	Red
		2		White
		3	Status (output)	Black
ernal input/outpu nector (EXT I/O)		4	Data storage (input)	Yellow
		5	Ground (common)	Blue

A plastic connector is used for the connection cable. Do not insert it into the terminal without aligning the guide grooves or pull it without releasing the lock, to prevent damage to the connector. 10

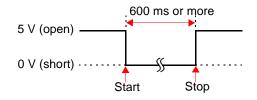
10.2 Functions of the External Input/Output Terminal



To prevent damage to the 3169-20/21, do not input to the input terminal a voltage beyond the range -0.5 V to +5.5 V.

- The external I/O functions will not operate properly if a signal with noise or chattering is input.
- The external I/O functions are enabled even when the keys are locked.

Input Terminal

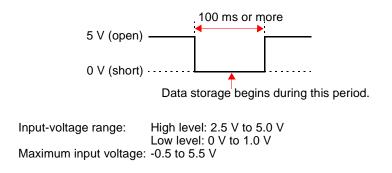


An 0/5-V logic signal or short/open contact signal is used for control.

10.2 Functions of the External Input/Output Terminal

(1) Start/Stop of Time-Series Measurement

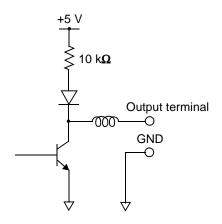
Open (High level) \rightarrow Short (low level): Starts measurement Short (Low level) \rightarrow Open (high level): Stops measurement



There is lag of approximately 600 ms from when the measurement start signal is input until the 3169-20/21 starts measurement.

(2) Data Storage into the Selected Medium

Saves measurement data manually on the PC card or in the internal memory, whichever is selected as the medium for saving data Short (low level): Manual storage



- This function is disabled during time-series measurement.
 - The function does not operate properly if the pulse is less than 100 ms.

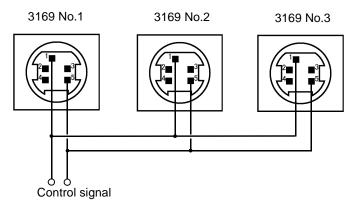
10.2 Functions of the External Input/Output Terminal

Output terminal

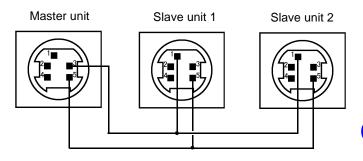
Status Output

Outputs a status signal indicating that the 3169-20/21 is performing time-series measurement.

During time-series measurement: Short (low level) Status other than time-series measurement: Open (high level)


- When the 3169-20/21 is standing by for measurement, it is treated as status other than time-series measurement.
- The lag of a signal is approximately 600 ms.

Output signal:	Open-collector output (with voltage out-
put)	
Output-voltage range:	High level: 4.5 V to 5.0 V
	Low level: 0 V to 0.5 V
Maximum input voltage:	0 to 30 V, 50 mAmax., 200 mWmax.


10.3 Controlling Multiple Units of the 3169-20/21

When using multiple units of the 3169-20/21, their start/stop of time-series measurement may be synchronized using the external I/O terminal.

Control Parallel

Master-Slave Connection

The slave units start time-series measurement, synchronized with the time-series measurement start signal output from the master unit.

155

156 Quick Start Manual

10.3 Controlling Multiple Units of the 3169-20/21

157

Using D/A Output (3169-21 only)

When the D/A output function is used, measurement data such as the voltage, current, and power is output in analog (D/A) form.

11.1 Connecting the D/A Output Terminal

To avoid electrocution, turn off the power to all devices before pluggingor unplugging any of the D/A output connectors.

- To prevent damage to the instrument, never connect or disconnect the connector with the power on (the D/A output is insulated from the voltage input and current input).
- Four output channels are available. Exercise great care when handling, as these channels are not insulated from each other.
- Use the optional 9441 connection cable.
- To prevent damage to the 3169-20/21, do not short-circuit the output terminal or input a voltage.

Connection to the D/A Output Terminal

Insert the 9441 CONNECTION CABLE into the D/A output terminal, aligning the connector guide grooves (the connector is equipped with a lock). When removing the connection cable, hold it by its plastic part.

9441 CONNECTION CABLE

D/A output connector (D/A OUT)

	Signal Name	9441 Cable Color
1	D/A output ch1	Red
2	D/A output ch2	White
3	D/A output ch3	Black
4	D/A output ch4	Yellow
5	Ground	Blue
6	Ground	Green
7	Ground	Brown
8	Ground	Gray
	3 4 5 6 7	2D/A output ch23D/A output ch34D/A output ch45Ground6Ground7Ground

- Pins 5 to 8 are common ground pins.
- A plastic connector is used for the connection cable. To prevent damage to the connector, do not insert it into the terminal without aligning the guide grooves, and do not pull it without releasing the lock.
- The output resistance of the output terminal is approximately 100 Ω . Make sure a recorder or other device to be connected to the terminal has an input resistance of 100 k Ω or more.

159

11.2 Setting D/A Output

11.2.1 Setting D/A Output Items

		Press the SET UP key to display the setting screen.		
F5	NEXT SCR	Press the F5 (NEXT SCR) key to display the D/A output setting screen. (SET UP 5/5)		
		SET UP 5/5 D/A OUTPUT 2002/25/35 D/A OUTPUT ITEMS		
		TYPE ITEM ORDER MAG. CH1 EOMBR U1 1 CH2 POWER I1 1 1 CH3 POWER P 1 1 CH4 POWER Q _1 1		
		INTEG. OUTPUT RATE 5V/5kWh		
		change NEXT SCR		
)	Move the cursor to the item to be changed.		
F1	change	Press the F1 (change) key to display the selection window.		
)	Select an item to be changed out of the selection list $\!\!\!\!\!\!^*$ using the cursor key.		
F1	select	Press the F1 (select) key.		

*: Selection List

Туре	Item	Order	Magnification
Power	Voltage (U1,U2,U3,Uave) Current (I1,I2,I3,I4,Iave) Power (P,Q,S) Power factor (PF) Frequency (f) Integrated power (WP+,WP-, WQ+,WQ-)		1
Harmonic level	Voltage (U1,U2,U3) Current (I1,I2,I3,I4) Power (P)	1 to 40	1,10,100
Harmonic content	Voltage (U1,U2,U3) Current (I1,I2,I3,I4) Power (P)	1 to 40	1,10,100
Harmonic phase angles	Voltage (U1,U2,U3) Current (I1,I2,I3,I4) Power (P)	1 to 40	1
Total value	Voltage (U1,U2,U3) Current (I1,I2,I3,I4) Power (P)		1
THD-F or THD-R	Voltage (U1,U2,U3) Current (I1,I2,I3,I4)		1

When multiple circuits are measured, the items for each circuit can be set separately. The items will be followed by a circuit No. (for example, I1_1, I1_2, P_1, P_2).

- The selectable items vary depending on the wiring method.
- The full-scale ranges vary depending on the setting of "Magnification" of "Harmonic level."
 5-A Range

Magnification	Full-Scale Output
1	5 A
10	0.5 A
100	0.05 A

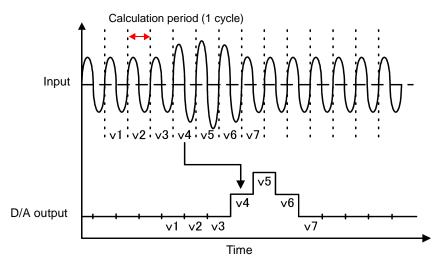
• The full-scale output (DC 5 V) varies as shown below, depending on the setting of "Magnification" of "Harmonic content."

Magnification	Full-Scale Output
1	100%
10	10%
100	1%

11.2.2 Setting the Integrated Power Output Rate

Set the output rate when integrated power is output from the D/A terminal. The output rate will be DC ± 5 V with respect to the set full scale of integrated power.

Select an integration output rate using the cursor keys.

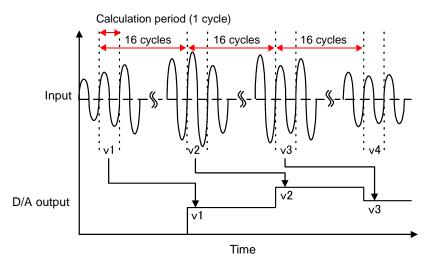

SET UP			
\bigcirc	Press the SET UP key to display the setting screen.		
F5 NEXT SCR	Press the F5 (NEXT SCR) key to display the D/A output setting screen. (SET UP 5/5)		
	SET UP 5/5 D/A OUTPUT 2002/25:25 2002/25 2002/25 2002/25		
	TYPE ITEM ORDER MAG. CH1 POWER U1 1 CH2 POWER I1 1 1 CH3 POWER P 1 1 CH4 POWER WP+ 1 1		
	INTEG. OUTPUT RATE 5V/5kWh		
	change NEXT SCR		
	Move the cursor to "INTEG. OUTPUT RATE."		
F1 change	Press the F1 (change) key to display the selection window.		
	5V/1kWh,5V/5kWh (default),5V/10kWh,5V/50kWh,5V/100kWh, 5V/500kWh,5V/1MWh		
	Select integration output rate using the cursor key.		
F1 select	Press the F1 (select) key.		

11.3 Response of Output

The 3169-20/21 continuously performs calculation in every cycle. (However, during harmonic measurement, calculation is performed after every 16 cycles.) D/A output is also updated in this cycle. Therefore, the output reflects even transient changes in input waveforms, such as the inrush current.

Normal Measurement Data

Output is updated every cycle (50 Hz: approx. 20 msec; 60 Hz: approx. 17 msec).



Although the output is updated every cycle, there is a lag of 2 to 3 cycles between the input of a waveform and the D/A output.

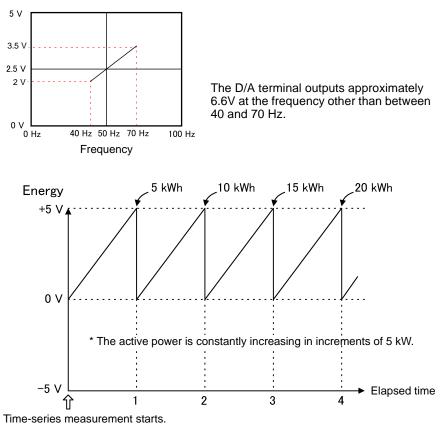
163

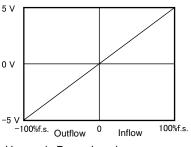
Harmonic Measurement Data

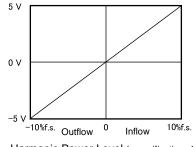
Output is updated every 16 cycles (50 Hz: approx. 320 msec; 60 Hz: approx. 270 msec).

The changed settings for D/A output items become effective when the screen is returned to the measurement screen.

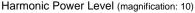
11.4 Output Waveform

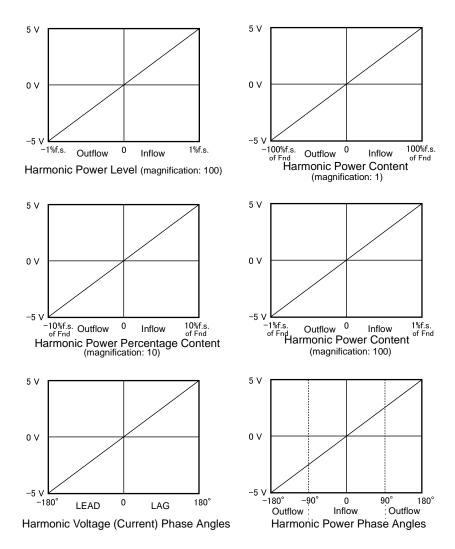

The format of output waveforms varies depending on the D/A output item. Use the following examples as a guide.

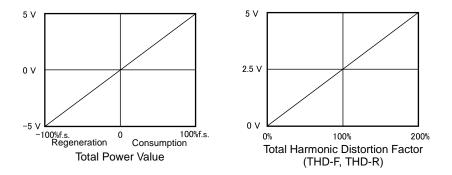

- The output rate will be DC±5 Vf.s.
- In the event of over-range on the plus side, the D/A terminal outputs approximately 6.6 V. In the event of over-range on the minus side, it outputs approximately -6.6 V.
- If the integrated power measurement increases constantly, the output voltage returns to 0 V when it reaches the set full scale, and then the output begins to rise again (the output is recorded as a sawtooth waveform).
- When the VT and CT ratios are set to a number other than 1, the full scale of the range will be the product of the full scale multiplied by the scaling value.
- The D/A output is updated regardless of whether the on-screen measurement data is held.



165




* The unit of kvarh is used for integrated reactive power.



Harmonic Power Level (magnification: 1)

- The harmonic voltage, the current level, voltage and the current content are not output in negative numbers.
- The harmonic voltage and the current phase angle are based on the phase of the fundamental of the PLL synchronization source, U_1 .
- The phase angle of harmonic power is the power factor of each order of harmonic expressed as an angle.
- The total voltage (current) is not output in negative numbers.

Operations in the Event of Power Outage

A power-supply outage of the 3169-20/21 may occur for various reasons during measurement. Such an outage will stop the measurement operation, but the 3169-20/21 has a function for backing up the measurement data and settings made prior to the outage.

Clock Continues to run

Settings

All settings are retained.

Measurement data

The maximum, minimum, and average values and integrated power measurements taken up to the outage are retained. The demand value at the demand time (i.e., the penultimate time before the outage) is retained. When time-series measurement is performed at a short-term intervals (all wave/100 ms/200 ms/500 ms), the data obtained up until 10 seconds prior to the outage is retained.

> Operations after Reset

3169-20/21	 Outage during standby state If the instrument is reset before the set time- series measurement start time, the instru- ment returns to the standby state. It starts time-series measurement at the set start time. If the instrument is reset after the set time- series measurement start time, the instru- ment starts time-series measurement at the next interval time.
	 Outage during time-series measurement The time-series measurement is suspended during the outage. After the instrument is reset, it performs time-series measurement for the remaining time. The measurements during the outage will be treated as "0."
PC Card/ Internal Memory	 If a power outage occurs while the memory is being accessed, the data being saved may be lost or, in the worst case, the file may be broken. If the outage occurs during timeseries measurement, the outage time and reset time will be saved after the reset. If the memory is not accessed during the outage and the outage occurs during time-series measurement, the outage time and reset time will be saved after the reset.
Printer	If a power outage occurs during printing, the printer stops printing immediately (except when the printer is operating on battery power).

3

Specifications

The specifications below apply to the 3169-20/21 CLAMP ON POWER HITESTER.

Environmental and Safety Specifications

Operating environment	Indoors, < 2000 m ASL (6562-ft.)		
Storage temperature and humidity	-10°C to 50°C (-14°F to 122°F), 80% RH or less (no condensation)		
Operating temperature and humidity	0°C to 40°C (32°F to 104°F), 80% RH or less (non-condensating)		
Dielectric strength (50/60 Hz for 15 sec.)	 5.55 kVrms (current sensitivity 1 mA) Between voltage input terminals and instrument case 3.32 kVrms (current sensitivity 1 mA) Between voltage input terminals and current input terminals, between external interface terminals 2.3 kVrms (current sensitivity 1 mA) Between power supply and instrument case 1.39 kVrms (current sensitivity 10 mA) Between power supply and current input terminals, between external interface terminals 		
Power supply	Rated power supply voltage: AC100 to 240 V Rated power supply frequency: $50/60$ Hz (Voltage fluctuations of $\pm 10\%$ from the rated supply voltage are taken into account.)		
Maximum rated power	30 VA		
Dimensions	Approx. 210W X 160H X 60D mm (not including protrusions) (8.27"W X 6.30"H X 2.36"D)		
Mass	Approx. 1.2 kg (3169-20/21) (42.3 oz.)		
Standards applying	Safety EN61010-1:2001 Pollution Degree 2, Measurement Category III (anticipated transient overvoltage 6000V) EMC EN61326:1997+A1:1998+A2:2001+A3:2003 Class A EN61000-3-2:2000 EN61000-3-3:1995+A1:2001		

Input Specifications

Manager and Para true a	Circle share Quine (4D0)(4), single share Quine (4D0)(4), these shares
Measurement line type	Single-phase 2-wire (1P2W), single-phase 3-wire (1P3W), three-phase 3-wire (3P3W2M,3P3W3M) or three-phase 4-wire (3P4W,3P4W4I)
Number of circuits to be measured	4 circuits (1P2W), 2 circuits (1P3W,3P3W2M), 1 circuit (3P3W3M,3P4W,3P4W4I) The voltage is the same.
Frequency of the mea- sured line	50/60 Hz
Input methods	Voltage: Isolated inputs (No insulation between U1,U2,U3, and N) Current: input is isolated by the clamp-on sensor
Measurement method	Simultaneous digital sampling of voltage and current PLL synchronization or 50/60-Hz fixed clock
PLL synch channel source	Voltage U1
PLL synch frequency range	45 to 66 Hz
Sampling frequency	128 points/cycle
A/D converter resolution	16 bits
Input resistance (50/60 Hz)	Voltage: 2.0 M $\Omega\pm$ 10% (differential operation) Current: 200 k $\Omega\pm$ 10%
Maximum input voltage	Voltage inputs: AC780 Vrms, 1103 Vpeak Current inputs: AC1.7 Vrms, 2.4 Vpeak
Maximum rated voltage to earth	Voltage input terminals: AC600 Vrms (50/60 Hz)

Measurement Items

Measurement Items	Voltage, Current, Active power, Reactive power, Apparent power,
	Power factor, Integrated active power, Integrated reactive power,
	Frequency, harmonic

Display

Display update rate	Approx. 0.5 seconds (Except when the PC card or internal memory is accessed or during RS-232C communications)
Display range	Voltage/current: 0.4% to 130% of the range (zero-suppressed at be- low 0.4%) Power: 0% to 130% of the range (zero-suppressed when the voltage or current is zero) Harmonic level: 0% to 130% of the range
Effective measurement range	5 to 110% of the range
Display language	Japanese/ English
Display monitor	5.7-inch STN monochrome LCD (320 x 240 dots)
Backlight	Auto OFF/ON/OFF
Contrast	Control using a dial

Miscellaneous Measurement Items

Voltage/Current Measurement

Measurement method	True RMS type
Measurement range	Voltage: 150.00/300.00/600.00 V Current: When the 9669 (0.5 mV/A) is used : 100.00/200.00/1.0000k A When the 9661/9695-03 (1 mV/A) is used: 5.0000/10.000/50.000/ 100.00/500.00 A When the 9660 (1 mV/A) is used: 5.0000/10.000/50.000/ 100.00 A When the 9667 5000 A range (0.1 mV/A) is used : 5.0000 kA When the 9667 500 A range (1 mV/A) is used : 500.00 A When the 9694 (10 mV/A) is used : 500.00 m/1.0000/5.0000/ Mhen the 9695-02 (10 mV/A) is used: 500.00 m/ 1.0000/ 5.0000/ 10.000/ 50.000 A (Selectable separately for each circuit)
Range selection	Manual range (separate current range selectable for each circuit)
Measurement accuracy	Voltage: \pm 0.2%rdg. \pm 0.1%f.s. Current: \pm 0.2%rdg. \pm 0.1%f.s. + clamp-on-sensor specification
Crest factor	Voltage: 2 or less (for full-scale input) Current: 4 or less (for full-scale input, 2 or less with the 500 A, 1 kA, and 5 kA ranges)

Active Power Measurement

Measurement range	Depends on the voltage x current range combination.
Measurement accuracy	$\pm 0.2\%$ rdg. $\pm 0.1\%$ f.s.+ clamp-on-sensor specification (power factor = 1)
Power factor influence	\pm 1.0%rdg. (45 to 66 Hz, power factor = 0.5)
Polarity display	For (consumption) No symbol For (regeneration) "-"

Reactive Power Measurement

Measurement range	Depends on the voltage x current range combination.
Reactive-power-meter method	Not used: Calculate using the voltage, current, and active-power measurements. Used: Measure the reactive power directly using the reactive-power-meter method.
Measurement accuracy	When the reactive-power-meter method is not used Each calculation result ± 1 dgt. When the reactive-power-meter method is used $\pm 0.2\%$ rdg. $\pm 0.1\%$ f.s. + clamp-on-sensor specification (reactive factor = 1)
Influence of the reactive factor	$\pm 1.0\%$ rdg. (45 Hz to 66 Hz; reactive factor = 0.5; reactive-power-meter method used)
Polarity display	For lag phase (LAG: current is slower than voltage): no symbol For lead phase (LEAD: current is faster than voltage): "-" (Only when the reactive-power-meter method is used)

Apparent Power Measurement

Measurement range	Depends on the voltage x current range combination.
Measurement accuracy	Each calculation result \pm 1dgt.
Polarity display	No symbol

Power Factor Measurement

Measurement range	-1.0000 (lead) to 0.0000 to +1.0000 (lag)
Measurement accuracy	± 1 dgt. for calculations derived from the various measurement values.
Polarity display	For lag phase (LAG: current is slower than voltage): no symbol For lead phase (LEAD: current is faster than voltage):"-" Measurement range

Frequency Measurement

Measurement method	Reciprocal frequencies
Measurement range	40.000 to 70.000 Hz
Measurement source	Voltage U1 (same as the PLL synchronization source)
Measurement accuracy	\pm 0.5%rdg. \pm 1dgt. For a sine wave input with a voltage range of 10% to 110%.

Integrated Power Measurement

Measurement range	Integrated active power Consumption: 0.00000 mWh to 99999.9 GWh Regeneration: -0.00000 mWh to -99999.9 GWh Integrated reactive power Lag: 0.00000 mvarh to 99999.9 Gvarh Lead: -0.00000 mvarh to -99999.9 Gvarh
Measurement accuracy	Measurement accuracy of active power/reactive power ± 1 dgt.
Integration time accuracy	±10 ppm ± 1 second (23°C, 73°F)
Measurement display	Integrated active power: Displays consumption/regeneration sepa- rately Integrated reactive power: Displays lag/lead separately

Harmonic Measurement

Measurement range	Fundamental frequency: 45 Hz to 66 Hz
Measurement method	PLL synchronization
Analysis frequencies	Up to the 40th order
Window width	One cycle
Window type	Rectangular
Number of pieces of analysis data	128 points

Harmonic Measurement

Analysis rate	Once/16 cycles
Analysis item	Harmonic level: Level of each order of harmonic for voltage, current, and power Harmonic content: The content of each order of harmonic for voltage, current, and power Harmonic phase angle: Phase angle of each order of harmonic for voltage, current, and power Total value: Total up to the 40th order harmonics of voltage, current, and power Total THD: Voltage and current (THD-F or THD-R)
Measurement accuracy	Harmonic level 1st to 20th orders: ± 1.0 %rdg. ± 0.2 %f.s. 21st to 30th orders: ± 1.0 %rdg. ± 0.3 %f.s. 31st to 40th orders: ± 2.0 %rdg. ± 0.3 %f.s. For the current and voltage, the clamp-on-sensor specification shall be taken into account. Harmonic power-phase angle The accuracy guarantee range is 1% and over of the range for each order of the harmonic voltage (current) level. 1st to 6th orders: $\pm 3^{\circ}$ 7th to 40th orders: $\pm (0.3^{\circ} X k+1^{\circ})$ The clamp-on-sensor specification shall be taken into account (k = order of the harmonic).

Settings

VT (PT) ratio	0.01 to 9999.99
CT ratio	0.01 to 9999.99 (Set separately for each circuit)
Measurement start method	Manual/time setting Time is set as: year (4 digits)/month/day/hour: minute (24-hour clock)
Measurement stop method	Manual/timer/time setting Time is set as: year (4 digits)/month/day/hour: minute (24-hour clock) The timer is set to between 1 second and 8784 hours.
Data-output interval	Standard/short-term The maximum measurement period is one year. Measurement stops immediately after the elapse of that period. When the memory capacity is exceeded, measurement is continued. Performance-assured PC card: 9626,9627,9726,9727,9728 (optional) Standard interval: 1/2/5/10/15/30 seconds 1/2/5/10/15/30/60 minutes The number of output items depends on the interval setting. Short-term interval: 1 cycle/0.1/0.2/0.5 seconds Only instantaneous values are output. Data is saved in the internal buffer memory (no backup function) tem- porarily, and is then saved in the set medium (PC card/internal mem- ory) every 10 seconds.
Medium for saving data	Memory: PC card/internal memory When the PC card is selected, if it is not installed, data is saved in the internal memory.

Settings

File name	The file name is set by the user (using up to 8 half-size letters and numbers). If the file name is not set by the user, the instrument sets a file name automatically.
Device to be connected	PC/printer
to the RS-232C	No output to the printer when the interval is less than 1 minute
THD selection	THD-F (based on the fundamental)/THD-R (based on the fundamental and all harmonics)
Harmonic order for display	All order/odd order
Sampling method	PLL synchronization/fixed clock (50/60 Hz)
Backlight	Auto OFF/ON/OFF Auto OFF turns off the backlight automatically 5 minutes after the last key operation. After the backlight is turned off by Auto OFF, it can be turned on again by pressing any key (the same applies when the keys are locked).
Display average times	OFF/2/5/10/20 (moving average of continuous waveform)
Medium for copying screen	Printer/internal memory/PC card
Beep sound	ON/OFF
Language	Japanese/English/German/Italian/Chinese (Simple, Trad)/French/ Spanish/Korean
ID No.	1 to 999
Clock setting	Year (4 digits)/month/day/hour/minute (24-hour clock)

Other

Life of backup lithium battery	Approx. 6 years (reference data at 23°C, 73°F); for backup of clock and settings (lithium battery)
Clock function	Auto-calendar, automatic leap-year adjustment, 24-hour clock
Clock Accuracy	±10 ppm ±1 second (23°C, 73°F) (within ±1.9 seconds/day (23°C, 73°F))
Internal-memory capacity	1 MB
Frequency characteristics	$\pm 3\%$ f.s. + measurement accuracy up to the 50th frequency of the fundamental, with a fundamental frequency of 45 Hz to 66 Hz
Temperature coefficient	Within ±0.03% f.s. / °C
Influence of common- mode voltage	Within $\pm 0.2\%$ f.s. (AC 600 Vrms, 50/60 Hz, between the voltage input terminal (shorted) and the case)
Influence of the external magnetic field	Within $\pm 1.5\%$ f.s. (in a magnetic field of AC 400 Arms/m, 50/60 Hz)
Effect of radiated radio-frequency electromagnetic field	Influence of a radioactive radio-frequency electromagnetic field With a current of $\pm 3\%$ f.s. at 10 V/m (when the 9667 is used; f.s. is the rated primary current of the 9667)

Other

Effect of conducted radio-frequency	Influence of a conductive radio-frequency electromagnetic field With a current of $\pm 3\%$ f.s. at 3 V (when the 9667 is used; f.s. is the
electromagnetic field	rated primary current of the 9667)

Conditions of Guaranteed Accuracy

Conditions of Guaranteed Accuracy	Warmup time of more than 30 minutes, input of a sine wave, power factor = 1, and PLL synchronization
Temperature and humidity for guaranteed accuracy	23°C ± 5°C(73°F± 9°F), 80% RH or less
Fundamental waveform range for guaranteed accuracy	45 to 66 Hz
Display area for guaranteed accuracy	Effective measurement area
Period of guaranteed accuracy	1 year

External Interface Specifications

PC card interface

Slot	PC Card Standard Type II slot x 1
Card	Flash ATA card
Storage capacity	Up to 528 MB
Data format	MS-DOS format
Stored data	Setting, measurement, and screen data

RS-232C interface

Method	EIA RS-232C
Connector	Mini DIN 9-pin connector x 1
Transfer method	Asynchronous communication method, full duplex
Baud rate	2400/ 9600/ 19200/ 38400 bps
Data length	8 bits
Parity check	None
Stop bit	1
Flow control	None, XON/XOFF, RTS/CTS
Delimiter	CR+LF/ CR

D/A Output (3169-21 only)

Number of output channels	4 channels
Output level	DC± 5 V/f.s.
Resolution	Polarity + 11 bits
Output accuracy	Measurement accuracy ±0.2% f.s.
Temperature coefficient	±0.02% f.s./°C or less
Output resistance	100 $\mathbf{\Omega} \pm 5\%$
Output update rate	Normal measurement items: Every cycle of measurement input Harmonic measurement items: Every 16 cycles of measurement in- put
Output items	Selectable from among 4 items Instantaneous value Voltage, current, average voltage, average current, active power, reactive power, apparent power, power factor, frequency Integrated power Integrated active power (consumption/regeneration), Integrated reactive power (lag/lead) Harmonic Harmonic Harmonic level, harmonic content, and harmonic phase angle of each order; total value; THD-F/THD-R
Integrated power output rate	5 V/1 kWh, 5 V/5 kWh, 5 V/10 kWh, 5 V/50 kWh, 5 V/100 kWh, 5 V/500 kWh, 5 V/1000 kWh
External Input/Output	
Control items	Start/stop of time-series measurement

Control terns	Status output (Low level during time-series measurement) Data storage
Signal level	0/5-V logic signal, short/open contact signal

Accessories and Options

Accessories	9438-03 VOLTAGE CORD Power cord Instruction manual (Booklet and CD-R)	
	Quick start manual (Booklet) RS-232C instruction manual (CD-R) Input cord label	13
Options	9441 CONNECTION CABLE (3169-21 only) 9660 CLAMP ON SENSOR (100 A rms rating) 9661 CLAMP ON SENSOR (500 A rms rating) 9667 FLEXIBLE CLAMP ON SENSOR (5000 A rms rating) 9669 CLAMP ON SENSOR (1000 A rms rating) 9695-02 CLAMP ON SENSOR (50 Arms rating) 9695-03 CLAMP ON SENSOR (50 Arms rating) 9219 CONNECTION CABLE (for 9695-02/03) 9290 CLAMP ON ADAPTER (continuous 1000 A, up to 1500 A, CT ratio 10:1) 9440 CONNECTION CABLE (for external input/output terminal) 9441 CONNECTION CABLE (for pl/A output, 3169-21 only) 9612 RS-232C CABLE (for PC) 9442 PRINTER (with 1 roll of thermally sensitized paper supplied, with battery pack) 9443-01 AC ADAPTER (for printers) for Japan 9443-02 AC ADAPTER (for printers) for USA 1196 RECORDING PAPER (25 m, 10 rolls) 9721 RS-232C CABLE (for printer) 9720-01 CARRYING CASE (The voltage cords and clamp-on sensor	
	are also housed in the case.) 9626 PC card 32MB (32 MB compact Flash card + adapter) 9627 PC card 64MB (64 MB compact Flash card + adapter) 9726 PC card 128MB (128 MB compact Flash card + adapter) 9727 PC card 256MB (256 MB compact Flash card + adapter) 9728 PC card 512MB (512 MB compact Flash card + adapter)	

13.1 Formulae

Instantaneous-Value Formulae

Wiring setting	Single-phase 2-wire	Single-phase 3-wire	Three-pha	ase 3-wire	Three-phase 4-wire
Item	1P2W	1P3W	3P3W2M	3P3W3M	3P4W,3P4W4I
Voltage U [Vrms]	U ₁	$U_1 U_2$	$U_1 U_2 U_3 (U_{3s} = U_{1s} - U_{2s})$ *1	$U_1(U_{1s}=u_{1s}-u_{2s}) U_2(U_{2s}=u_{2s}-u_{3s}) U_3(U_{3s}=u_{3s}-u_{1s})$	$U_1 \\ U_2 \\ U_3$
	$U_{i} = \sqrt{\frac{1}{M} \sum_{s=0}^{M-1} (U_{is})^{2}}$	$U_{\text{ave}} = \frac{U_1 + U_2}{2}$	$U_{\text{ave}} = \frac{U_1 + U_2 + U_3}{3}$	1 ₃	
Current I [Arms]	I_{1} $I_{i} = \sqrt{\frac{1}{M} \sum_{s=0}^{M-I} (I_{is})^{2}}$	I_1 I_2	$I_{1} I_{2} I_{3}(I_{3s}=-I_{1s}-I_{2s})$ *2	$ \begin{array}{c} I_1 \\ I_2 \\ I_3 \\ I_4 \end{array} $ (3P4W4I only)	
	$M_{s=0}^{M=0}$	$I_{\text{ave}} = \frac{I_1 + I_2}{2}$	$I_{\text{ave}} = \frac{I_1 + I_2 + I_3}{3}$		
Active	<i>P</i> ₁	$P_1 + P_2$	•	$P_1 + P_2 + P_3$	
<i>P</i> [W]	$P_{i} = \frac{1}{M} \sum_{s=0}^{M-1} (U_{is} \times I_{is})$			$U_{\rm i}$ represents the tral voltage.	phase to neu-
Reactive power Q [var]	Q_1 The reactive-power-meter method is not used.	$\sqrt{S^2 - P^2}$			
	$Qi = \sqrt{S_i^2 - P_i^2}$			1	
	The reactive-power-meter method is used.	$Q_1 + Q_2$		$Q_1 + Q_2 + Q_3$ U_i represents the	nhase to neu-
	<i>Q</i> ₁ =			tral voltage.	
	$\frac{1}{M} \sum_{s=0}^{M-1} \left\{ U_{is} \times I_i \left(s + \frac{m}{4} \right) \right\}$				
Apparent power	<i>S</i> ₁	$S_1 + S_2$	$\sqrt{3}(S + S + S)$	$\frac{\sqrt{3}}{3}(S_1 + S_2 + S_3)$	$S_1 + S_2 + S_3$
S [VA]	The reactive-power-meter method is not used. $S_i = U_i \times I_i$		U_i represents the	U_i represents the	the phase to
	The reactive-power-meter method is used.	$\sqrt{P^2+Q^2}$	1	1	1
	$S_{i} = \sqrt{P_{i}^{2} + Q_{i}^{2}}$				
Power fac- tor PF	$PF = si \left \frac{P}{S} \right $				
	*1: Provided t	hat U _{1s} + U _{2s}	$_{s} + U_{3s} = 0$		

*2: Provided that $I_{1s} + I_{2s} + I_{3s} = 0$

- **NOTE** *U*: Line to line voltage (phase to neutral voltage for a threephase 4-wire line); *I*: Line to line current; U_{ave} : Average voltage/average current within the circuit; *si*: Polarity of lead/lag (detected by the reactive-power-meter method, no indication for lag, or a minus sign indicated for lead); *u*: Phase voltage from a virtual neutral point; *i*: Measurement channel; *M*: Number of samples; *s*: Sample point No.; *m*: Number of samples in a cycle (128)
 - The power flow direction is indicated using the polarity signs for active power *P*: "+" indicates consumption and "-" indicates regeneration.
 - If S<|P| due to a measurement error, unbalance, or other factor, the 3169-20/21 will process data such that S=|P|, Q=0, and PF = 1.
 - If *S*=0, the instrument processes the data such that PF = over.

Processing Item	<i>k</i> th harmonic			Total up to the 40th	
Voltage U [Vrms]	U _k	$\sqrt{U_{kr}^2 + U_{ki}^2}$		$\sqrt{\sum_{k=1}^{40} (U_k)^2}$	
Voltage phase angles \$\$U [deg]	φU _k	$\tan^{-1}\left(\frac{U_{kr}}{-U_{ki}}\right)$			
Current I [Arms]	I _k	$\sqrt{I_{kr}^2 + I_{ki}^2}$		$\sqrt{\sum_{k=1}^{40} (I_k)^2}$	
Current phase angles ¢ <i>I</i> [deg]	φI _k	$\tan^{-1}\left(\frac{I_{\rm kr}}{-I_{\rm ki}}\right)$			
Power P [W]	P _k	$U_{\rm kr} \times I_{\rm kr} + U_{\rm ki} \times I_{\rm ki}$	P _K	$\sum_{k=1}^{40} P_k$	
Reactive power Q [var] *3	$Q_{\mathbf{k}}$	The reactive-power-meter method is used. $U_{kr} \times I_{ki} - U_{ki} \times I_{kr}$ *2	r		
Apparent power S [VA] *3	S _k	$\sqrt{P_k^2 + Q_k^2} \qquad \qquad U_k \times I_k$			
Harmonic	Voltage	<i>U</i> _k / <i>U</i> ₁ x 100 (%)			
voltage content	Current	<i>I</i> _k / <i>I</i> ₁ x 100 (%)	1		
[%]	Power	<i>P_k</i> / <i>P</i> ₁ x 100 (%)	1		

Basic Formulae for Harmonic

Processing Item	kth harmonic	Total up to the 40th	
Total har- monic dis- tortion-F THD-F [%]		THD _{UF}	$\frac{\sqrt{\sum_{k=2}^{40} (U_k)^2}}{U_1} $ X100 (%)
		THD _{IF}	$\frac{\sqrt{\sum_{k=2}^{40} (I_k)^2}}{I_1} $ X100 (%)
Total har- monic dis- tortion-R THD-R [%]		THD _{UR}	$\sqrt{\sum_{k=2}^{40} (U_k)^2} X100 \text{ (\%)}$ $\sqrt{\sum_{k=1}^{40} (U_k)^2} X100 \text{ (\%)}$
		THD _{IR}	$\frac{\sqrt{\sum_{k=2}^{40} (I_k)^2}}{\sqrt{\sum_{k=1}^{40} (I_k)^2}} X100 \ (\%)$

*1: The harmonic phase angle is displayed after it is corrected using the phase of the fundamental of the PLL synchronization/ frequency source as the reference phase (0.0°). When $U_{ki} = U_{kr}$

= 0, $\phi U_k = 0^\circ$. When $I_{ki} = I_{kr} = 0$, $\phi I_k = 0^\circ$.

- *2: Reactive power is calculated with the phase of the harmonic component of the current lagged by 90 degrees.
- *3: The calculation is performed internally and the result is not displayed on-screen.

- k: Harmonic order (k = 1 to 40), K: K = 40
- r: resistance component after FFT
- i: reactance component after FFT

Harmonic Formulae for Each Connection Method

Ū	Single-phase 2-wire	Single-phase 3-wire	Three-ph	ase 3-wire	Three-phase 4-wire
Item	1P2W	1P3W	3P3W2M	3P3W3M	3P4W,3P4W4I
Voltage $U_{\mathbf{k}}$ [Vrms]	U _{1k}	U_{1k} U_{2k}	$U_{1k} U_{2k} U_{2k} U_{3k} * 6$	U_{1k} U_{2k} U_{3k} *4	$U_{1k} \\ U_{2k} \\ U_{3k}$
Current I_k [Arms]	I _{1k}	I_{1k} I_{2k}	I_{1k} I_{2k} I_{3k} *5	$\frac{I_{1k}}{I_{2k}}$ $\frac{I_{3k}}{I_{3k}}$	$I_{1k} I_{2k} I_{3k} I_{4k}$
Active power P _k [W]	P _{1k}	$P_{1k} + P_{2k}$	$P_{1k} + P_{2k}$	$P_{1k} + P_{2k} + P_{3k}$ *3	$P_{1k} + P_{2k} + P_{3k}$
Reactive power Q_k [var] *1	Q_{1k}	Q_{1k} + Q_{2k}	$Q_{1k} + Q_{2k}$	$Q_{1k} + Q_{2k} + Q_{3k}$ *3	$Q_{1k} + Q_{2k} + Q_{3k}$

13.1	Formulae	

Wiring	Single-phase 2-wire	Single-phase 3-wire	Three-pha	ase 3-wire	Three-phase 4-wire
Item	1P2W	1P3W	3P3W2M	3P3W3M	3P4W,3P4W4I
Apparent power S _k [VA] *2	S _{1k}	$S_{1k} + S_{2k}$	The reactive-power method is used. $\sqrt{P_k^2 + Q_k^2}$ The reactive-power method is not used $\frac{\sqrt{3}}{3}(S_{1k} + S_{2k} + S_{3k})$	r-meter	$S_{1k} + S_{2k} + S_{3k}$
Power phase angles φ _k [deg]	The reactive-power method is used. $\tan^{-1}\left(\frac{Q_k}{P_k}\right)^{*7}$ The reactive-power method is not used $\cos^{-1}\left(\frac{P_k}{S_k}\right)^{*8}$	r-meter			

- *1: The calculation is performed internally, and the result is not displayed on-screen, when the reactive-power-meter method is used. The calculation is not performed when the reactive-power-meter method is not used.
- *2: The calculation is performed internally, and the result is not displayed on-screen.
- *3: The phase voltage from a virtual neutral point is used for calculation of *P*, *Q*.

$$P_{k} = u_{1kr} \bullet I_{1kr} + u_{1ki} \bullet I_{1ki} + u_{2kr} \bullet I_{2kr} + u_{2ki} \bullet I_{2ki} + u_{3kr} \bullet I_{3kr} + u_{3ki} \bullet I_{3ki}$$

$$Q_{k} = (u_{1kr} \bullet I_{1ki} - u_{1ki} \bullet I_{1kr}) + (u_{2kr} \bullet I_{2ki} - u_{2ki} \bullet I_{2kr}) + (u_{3kr} \bullet I_{3ki} - u_{3ki} \bullet I_{3kr})$$

- *4: U_{1s} = u_{1s} u_{2s}, U_{2s} = u_{2s} u_{3s}, U_{3s} = u_{3s} u_{1s}
 U: Line to line voltage; u: Phase to neutral voltage from a virtual neutral point
- *5: $I_{3s} = -I_{1s} I_{2s}$ (provided that $I_{1s} + I_{2s} + I_{3s} = 0$)
- *6: $U_{3s} = U_{1s} U_{2s}$ (provided that $U_{1s} + U_{2s} + U_{3s} = 0$)
- *7: When $P_{k} = Q_{k} = 0$, $\phi_{k} = 0^{\circ}$.
- *8: When $S_{k} = 0$, $\phi_{k} = 0^{\circ}$.

- The subscript numbers represent measurement-channel numbers. (k: Analysis order)
- The expressions above represent the kth harmonic. In the expressions for total values, $_{\rm k}$ is replaced by K.

13.2 Range Configuration and Accuracy by Clamp-On-Sensor

Power Range Configuration (when the 9660, 9661, or 9695-03 is used)

		Current					
Voltage	Wiring	9661 CLAMP ON SENSOR					
voltage	wining	9660/9695	9660/9695-03 CLAMP ON SENSOR (CAT III 300 V)				
		5.0000 A	10.000 A	50.000 A	100.00 A	500.00 A	
150.00 V	1P2W	750.00 W	1.5000 kW	7.5000 kW	15.000 kW	75.000 kW	
	1P3W 3P3W2M 3P3W3M	1.5000 kW	3.0000 kW	15.000 kW	30.000 kW	150.00 kW	
	3P4W 3P4W4I	2.2500 kW	4.5000 kW	22.500 kW	45.000 kW	225.00 kW	
300.00 V	1P2W	1.5000 kW	3.0000 kW	15.000 kW	30.000 kW	150.00 kW	
	1P3W 3P3W2M 3P3W3M	3.0000 kW	6.0000 kW	30.000 kW	60.000 kW	300.00 kW	
	3P4W 3P4W4I	4.5000 kW	9.0000 kW	45.000 kW	90.000 kW	450.00 kW	
600.00 V	1P2W	3.0000 kW	6.0000 kW	30.000 kW	60.000 kW	300.00 kW	
	1P3W 3P3W2M 3P3W3M	6.0000 kW	12.000 kW	60.000 kW	120.00 kW	600.00 kW	
	3P4W, 3P4W4I	9.0000 kW	18.000 kW	90.000 kW	180.00 kW	900.00 kW	

- The range-configuration table shows the full-scale display value of each measurement range.
 - Voltage and current measurements are indicated as 0.4% to 130% f.s. of the range. If a measurement is below 0.4% f.s., it will be zero-suppressed.
- Power measurement is indicated as 0% to 130% f.s. of the range. It will be zero-suppressed when the voltage or current is 0.
- The accuracy-guarantee ranges of the 9660/9695-03 and 9661 sensors are 5 A to 100 A and 5 A to 500 A, respectively.
- The range configuration for apparent power (*s*) and reactive power (*Q*) is the same, except that the unit is changed to VA and var, respectively.
- When the VT ratio and CT ratio are set, the ranges will be multiplied by (VT ratio x CT ratio) (when a range falls below 1.0000 mW or exceeds 9.9999 GW, a scaling error occurs and the setting is not accepted).

Accuracy by Clamp-On Sensor (when the 9660, 9661, or 9695-03 is used)

Range	9660 CLAMP ON SENSOR 9695-03 CLAMP ON SENSOR	9661 CLAMP ON SENSOR
500.00 A		\pm 0.5%rdg. \pm 0.11%f.s.
100.00 A	\pm 0.5%rdg. \pm 0.12%f.s.	\pm 0.5%rdg. \pm 0.15%f.s.
50.000 A	\pm 0.5%rdg. \pm 0.14%f.s.	\pm 0.5%rdg. \pm 0.2%f.s.
10.000 A	\pm 0.5%rdg. \pm 0.3%f.s.	\pm 0.5%rdg. \pm 0.6%f.s.
5.0000 A	\pm 0.5%rdg. \pm 0.5%f.s.	\pm 0.5%rdg. \pm 1.1%f.s.

Power Range Configuration (when the 9669 is used)

	1		Current		
Voltage	Wiring	9669 CLAMP ON SENSOR			
		100.00 A	200.00 A	1.0000 kA	
150.00 V	1P2W	15.000 kW	30.000 kW	150.00 kW	
	1P3W 3P3W2M 3P3W3M	30.000 kW	60.000 kW	300.00 kW	
	3P4W 3P4W4I	45.000 kW	90.000 kW	450.00 kW	
300.00 V	1P2W	30.000 kW	60.000 kW	300.00 kW	
	1P3W 3P3W2M 3P3W3M	60.000 kW	120.00 kW	600.00 kW	
	3P4W 3P4W4I	90.000 kW	180.00 kW	900.00 kW	
600.00 V	1P2W	60.000 kW	120.00 kW	600.00 kW	
	1P3W 3P3W2M 3P3W3M	120.00 kW	240.00 kW	1.2000 MW	
	3P4W 3P4W4I	180.00 kW	360.00 kW	1.8000 MW	

- The range-configuration table shows the full-scale display value of each measurement range.
- Voltage and current measurements are indicated as 0.4% to 130% f.s. of the range. If a measurement is below 0.4% f.s., it will be zero-suppressed.
- Power measurement is indicated as 0% to 130% f.s. of the range. It will be zero-suppressed when the voltage or current is 0.
- The range configuration for apparent power (*s*) and reactive power (*Q*) is the same, except that the unit is changed to VA and var, respectively.
- When the VT ratio and CT ratio are set, the ranges will be multiplied by (VT ratio x CT ratio) (when a range falls below 1.0000 mW or exceeds 9.9999 GW, a scaling error occurs and the setting is not accepted).

Accuracy by Clamp-On Sensor (when the 9669 is used)

Range	9669 CLAMP ON SENSOR
1.0000 kA	\pm 1.2%rdg. \pm 0.11%f.s.
200.00 A	\pm 1.2%rdg. \pm 0.15%f.s.
100.00 A	\pm 1.2%rdg. \pm 0.2%f.s.

Power Range Configuration (when the 9667 is used)

		Cur	rent	
Voltage	Wiring	9667 FLEXIBLE CLAMP ON SENSO		
voltage	wining	500 A range	5000 A range	
		500.00 A	5.0000 kA	
150.00 V	1P2W	75.000 kW	750.00 kW	
	1P3W 3P3W2M 3P3W3M	150.00 kW	1.5000 MW	
	3P4W 3P4W4I	225.00 kW	2.2500 MW	
300.00 V	1P2W	150.00 kW	1.5000 MW	
	1P3W 3P3W2M 3P3W3M	300.00 kW	3.0000 MW	
	3P4W 3P4W4I	450.00 kW	4.5000 MW	
600.00 V	1P2W	300.00 kW	3.0000 MW	
	1P3W 3P3W2M 3P3W3M	600.00 kW	6.0000 MW	
	3P4W 3P4W4I	900.00 kW	9.0000 MW	

- The range-configuration table shows the full-scale display value of each measurement range.
- Voltage and current measurements are indicated as 0.4% to 130% f.s. of the range. If a measurement is below 0.4% f.s., it will be zero-suppressed.
- Power measurement is indicated as 0% to 130% f.s. of the range. It will be zero-suppressed when the voltage or current is 0.
- The range configuration for apparent power (S) and reactive power (Q) is the same, except that the unit is changed to VA and var, respectively.
- When the VT ratio and CT ratio are set, the ranges will be multiplied by (VT ratio x CT ratio) (when a range falls below 1.0000 mW or exceeds 9.9999 GW, a scaling error occurs and the setting is not accepted).

Accuracy by Clamp-On Sensor (when the 9667 is used)

Range	9667 FLEXIBLE CLAMP ON SENSOR 5000 A range	9667 FLEXIBLE CLAMP ON SENSOR 500 A range
5.0000 kA	\pm 2.2%rdg. \pm 0.4%f.s.	
500.00 A		\pm 2.2%rdg. \pm 0.4%f.s.

Power Range Configuration (when the 9694 or 9695-02 is used)

		Current					
Voltage	M/irin a	9695-02 CLAMP ON SENSOR (CAT III 300 V)					
voltage	Wiring	9694 CLAMP ON SENSOR (CAT III 300 V)					
		500.00 mA	1.0000 A	5.0000 A	100.00 A	500.00 A	
150.00 V	1P2W	75.000 W	150.00 W	750.00 W	15.000 kW	75.000 kW	
	1P3W 3P3W2M 3P3W3M	150.00 W	300.00 W	1.5000 kW	30.000 kW	150.00 kW	
	3P4W 3P4W4I	225.00 W	450.00 W	2.2500 kW	45.000 kW	225.00 kW	
300.00 V	1P2W	150.00 W	300.00 W	1.5000 kW	30.000 kW	150.00 kW	
· · · ·	1P3W 3P3W2M 3P3W3M	300.00 W	600.00 W	3.0000 kW	60.000 kW	300.00 kW	
	3P4W 3P4W4I	450.00 W	900.00 W	4.5000 kW	90.000 kW	450.00 kW	
600.00 V	1P2W	300.00 W	600.00 W	3.0000 kW	60.000 kW	300.00 kW	
	1P3W 3P3W2M 3P3W3M	600.00 W	1.2000 kW	6.0000 kW	120.00 kW	600.00 kW	
	3P4W 3P4W4I	900.00 W	1.8000 kW	9.0000 kW	180.00 kW	900.00 kW	

- The range-configuration table shows the full-scale display value of each measurement range.
- Voltage and current measurements are indicated as 0.4% to 130% f.s. of the range. If a measurement is below 0.4% f.s., it will be zero-suppressed.
- Power measurement is indicated as 0% to 130% f.s. of the range. It will be zero-suppressed when the voltage or current is 0.
- The range configuration for apparent power (S) and reactive power (Q) is the same, except that the unit is changed to VA and var, respectively.
- When the VT ratio and CT ratio are set, the ranges will be multiplied by (VT ratio x CT ratio) (when a range falls below 1.0000 mW or exceeds 9.9999 GW, a scaling error occurs and the setting is not accepted).
- The accuracy-guarantee ranges of the 9694 and 9695-02 sensors are 500 mA to 5 A, respectively.

Accuracy by Clamp-On Sensor (when the 9694 or 9695-02 is used)

Range	9694 CLAMP ON SENSOR	9695-02 CLAMP ON SENSOR
50.000 A		\pm 0.5%rdg. \pm 0.12%f.s.
10.000 A		\pm 0.5%rdg. \pm 0.2%f.s.
5.0000A	\pm 0.5%rdg. \pm 0.12%f.s.	\pm 0.5%rdg. \pm 0.3%f.s.
1.0000A	\pm 0.5%rdg. \pm 0.2%f.s.	\pm 0.5%rdg. \pm 1.1%f.s.
500.00mA	\pm 0.5%rdg. \pm 0.3%f.s.	\pm 0.5%rdg. \pm 2.1%f.s.

188 13.2 Range Configuration and Accuracy by Clamp-On-Sensor

Maintenance and Service

14.1 Cleaning and Storage

Cleaning

- To clean the product, wipe it gently with a soft cloth moistened with water or mild detergent. Never use solvents such as benzene, alcohol, acetone, ether, ketones, thinners or gasoline, as they can deform and discolor the case.
- Wipe the LCD gently with a soft, dry cloth.
- Measurements are degraded by dirt on the mating surfaces of the clamp-on sensor, so keep the surfaces clean by gently wiping with a soft cloth.

Storage

- Storage temperature and humidity should be kept between -20 and 50°C, at less than 80% RH.
- Do not store or use the product where it could be exposed to direct sunlight, high temperature or humidity, or condensation. Under such conditions, the product may be damaged and insulation may deteriorate so that it no longer meets specifications.
- When storing the instrument for a long time (one year or more), the specifications are no longer guaranteed. Therefore, before use, have the instrument recalibrated.

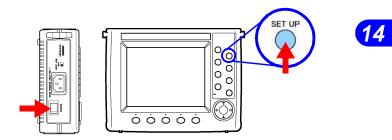
14

14.2 Repair and Servicing

<u>A</u>CAUTION

- Adjustments and repairs should be made only by technically qualified personnel.
- If damage is suspected, check the "Troubleshooting" section before contacting your dealer or Hioki representative.
- Pack the product carefully so that it will not be damaged during shipment, and include a detailed written description of the problem. Hioki cannot be responsible for damage that occurs during shipment.

Troubleshooting


If problems are encountered with operation, check the appropriate items below.

Symptom	Check Items
The POWER LED	 Is the Power switch turned on?
lights, but the	 Are the AC Adapter and power cord securely connected?
screen is blank.	 Is the LCD Auto Off setting enabled?
Keys do not oper-	 Is a key stuck?
ate.	 Is the Key Lock switch on?
Measurements are unstable	 Is the line frequency 50 or 60 Hz? 400-Hz line measurements are not supported.
Measurement data cannot be acquired	 Are the voltage cords and clamp sensors connected prop- erly?
as intended.	 Do the actual measurement lines match the measurement line settings?
Data cannot be	 Is the PC Card firmly inserted?
saved to a PC	 Is the PC Card initialized (formatted)?
Card.	 Is the PC Card already full?
Operation is incor-	 Is the instrument turned on?
rect when con-	 Is the interface cable connected properly?
nected to a PC.	 Are the interface settings correct?
Unable to print.	 Is the printer turned on?
	 Is the interface cable connected properly?
	Are the interface settings correct?
	 Is the recording paper loaded properly (front and back)?
	 The power protection circuitry may be damaged. As this can-
on.	not be replaced or repaired by the user, please contact your supplier or nearest Hioki representative.
	, and a second the problem still econest he found the repotition the

If the cause of the problem still cannot be found, try resetting the system. This returns most of the system settings to their factory defaults.

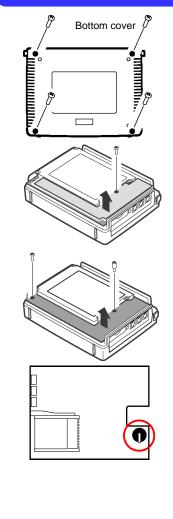
System Reset

Turn the power OFF and then ON again while holding down the **SET UP** key to perform a system reset.

A system reset will return all settings of the 3169-20/21 (except for the clock) to the defaults.

14.3 Instrument Disposal

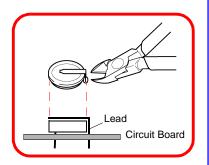
The instrument contains a lithium battery for system backup.


<u> MARNING</u>

- To avoid electrocution, turn off the power switch and disconnect the power cord before removing the lithium battery.
- To avoid the possibility of explosion, do not short circuit, disassemble or incinerate batteries.

- If the protective functions of the instrument are damaged, either remove it from service or mark it clearly so that others do not use it inadvertently.
- When disposing of this instrument, remove the lithium battery and dispose of battery and instrument in accordance with local regulations.

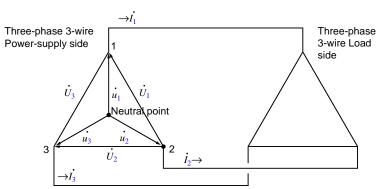
Lithium Battery Removal



Required tools:

- Phillips screwdriver 1
- Wire cutter
- Hexagonal wrench 1
 - 1. Turn OFF the power to the 3169-20/21.

1


- 2. Turn the instrument upside down and remove the four screws affixing the bottom cover.
- **3.** Turn the instrument right side up and remove the top cover.
- **4.** Remove one screw, and then remove the key circuit board.
- 5. Cut the two leads of the button-type lithium battery near the corner of the circuit boards.
- 6. Remove two screws, and then remove the circuit board fastening the LCD.

Appendix

Power Measurement by the 2 Power-Meter Method and U3/I3 Measurement Theory (3P3W2M mode)

The figure above shows an artificial circuit of a three-phase 3-wire line. In the figure, \dot{U}_1 , \dot{U}_2 , and \dot{U}_3 represent the vectors of line to line voltage; \dot{I}_1 , \dot{I}_2 , and \dot{I}_3 represent the line (phase) current vectors; \dot{u}_1 , \dot{u}_2 , and \dot{u}_3 represent the phase to neutral voltage vectors. Normally, three-phase power P is obtained as the sum of the power of the phases.

 $P = u_1 I_1 + u_2 I_2 + u_3 I_3 \quad (1)$

A three-phase 3-wire line, however, doesn't have a neutral point, and the power of each phase cannot be measured directly. If a neutral point hypothetically existed, three power meters must be used simultaneously. For this reason, the 2-power-meter method (2 voltages and 2 currents) using the line voltage is generally used instead. Theoretically, the power of each phase is obtained using the following equation:

If measuring \dot{U}_1 , \dot{U}_2 , \dot{I}_1 , and \dot{I}_3 using power meters,

$$P = \dot{U}_{1}\dot{I}_{1} + \dot{U}_{2}\dot{I}_{3} \qquad (\dot{U}_{1} = \dot{u}_{1} - \dot{u}_{2}, \ \dot{U}_{2} = \dot{u}_{3} - \dot{u}_{2})$$

$$= (\dot{u}_{1} - \dot{u}_{2})\dot{I}_{1} + (\dot{u}_{3} - \dot{u}_{2})\dot{I}_{3}$$

$$= \dot{u}_{1}\dot{I}_{1} + \dot{u}_{2}(-\dot{I}_{3} - \dot{I}_{1}) + \dot{u}_{3}\dot{I}_{3} \text{ (because } \dot{I}_{1} + \dot{I}_{2} + \dot{I}_{3} = 0 \text{ provided that}$$
the circuit is closed)
$$= \dot{u}_{1}\dot{I}_{1} + \dot{u}_{2}\dot{I}_{2} + \dot{u}_{3}\dot{I}_{3} (2)$$

Equation (1) coincides with equation (2). This proves that the power of a three-phase 3-wire line is measured by the 2-powermeter method. In addition, there is no special precondition required, except that the circuit must be closed and without leakage current. Therefore, three-phase power can be obtained regardless of whether the cable way is balanced or unbalanced. The 3P3W2M mode of the 3169-20/21 employs this method. In addition, because the sum of the voltage (current) vectors is always zero, the 3169-20/21 internally implements the following equations to measure the 3rd voltage and current:

$$\begin{vmatrix} \dot{U}_3 \\ \dot{U}_3 \end{vmatrix} = \begin{vmatrix} \dot{U}_1 - \dot{U}_2 \\ \dot{U}_2 \end{vmatrix}$$
$$\begin{vmatrix} \dot{U}_1 - \dot{U}_2 \\ \dot{U}_1 - \dot{U}_2 \end{vmatrix}$$

Regarding U_3 and I_2 , measurement is performed regardless of whether distortion is present. These values are reflected in the three-phase apparent power and power factor (when the reactive-power-meter method is not used).

In the 3P3W2M mode of the 3169-20/21, the phase C current of the three-phase line is input to I2 of each circuit. On the display, the current measurement of phase C is shown as I2, and the calculation result of phase B is shown as I3.

Instantaneous-Value Data (Normal Measurement), Integrated Power and Damand Value

Classification	Data Header	Contents	Unit
Date and Time	DATE	Data-output date, yyyy/m/d	
	TIME	Data-output time, h:mm:ss	
	ETIME	Elapsed time, hhhhh:mm:ss	
Information	STATUS	10-bit data showing various pieces of status information	
Voltage	U1_INST[V]	Voltage RMS value, CH1	V
	U2_INST[V]	Voltage RMS value, CH2	V
	U3_INST[V]	Voltage RMS value, CH3	V
	Uave_INST[V]	Voltage RMS value, Average value of channels	V
Current	I1_INST[A]_1 to I1_INST[A]_4	Current RMS value, CH1, Circuit 1-4	A
	I2_INST[A]_1 to I2_INST[A]_2	Current RMS value, CH2, Circuit 1-2	A
	I3_INST[A]_1 to I3_INST[A]_2	Current RMS value, CH3, Circuit 1-2	A
	lave_INST[A]_1 to lave_INST[A]_2	Current RMS value, Average value of channels, Circuit 1-2	A
	I4_INST[A]_1	Current RMS value, CH4	А
Power	P_INST[W]_1 to P_INST[W]_4	Active power, Circuit 1-4	W
	Q_INST[var]_1 to Q_INST[var]_4	Reactive power, Circuit 1-4	var
	S_INST[VA]_1 to S_INST[VA]_4	Apparent power, Circuit 1-4	VA
Power Factor	PF_INST_1 to PF_INST_4	Power factor, Circuit 1-4	
Frequency	F_INST[Hz]	Frequency	Hz
	P1_INST[W]_1 to P1_INST[W]_2	Active power, CH1, Circuit 1-2	W
СН	P2_INST[W]_1 to P2_INST[W]_2	Active power, CH2, Circuit 1-2	W
	P3_INST[W]_1	Active power, CH3	W
	Q1_INST[var]_1 to Q1_INST[var]_2	Reactive power, CH1, Circuit 1-2	var
	Q2_INST[var]_1 to Q2_INST[var]_2	Reactive power, CH2, Circuit 1-2	var
	Q3_INST[var]_1	Reactive power, CH3	var
	S1_INST[VA]_1 to S1_INST[VA]_2	Apparent power, CH1, Circuit 1-2	VA
	S2_INST[VA]_1 to S2_INST[VA]_2	Apparent power, CH2, Circuit 1-2	VA
	S3_INST[VA]_1	Apparent power, CH3	VA
	PF1_INST_1 to PF1_INST_2	Power factor, CH1, Circuit 1 to 2	
	PF2_INST_1 to PF2_INST_2	Power factor, CH2, Circuit 1-2	
	PF3_INST_1	Power factor, CH3	

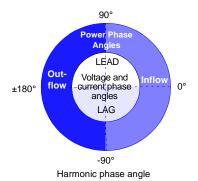
Classification	Data Header	Contents	Unit			
Integrated	Total integrated power from the start of time-series	measurement				
power	WP+_INTEG[Wh]_1 to WP+_INTEG[Wh]_4	Integrated active power (consumption), Circuit 1-4	Wh			
	WPINTEG[Wh]_1 to WPINTEG[Wh]_4	Integrated active power (regeneration), Circuit 1-4	Wh			
	WQ+_INTEG[varh]_1 to WQ+_INTEG[varh]_4	Integrated reactive power (lag), Circuit 1-4	varh			
	WQINTEG[varh]_1 to WQINTEG[varh]_4	Integrated reactive power (lead), Circuit 1-4	varh			
Demand	Integrated power within interval					
	WP+_INTVL[Wh]_1 to WP+_INTVL[Wh]_4	Integrated active power (consumption), Circuit 1-4	Wh			
	WPINTVL[Wh]_1 to WPINTVL[Wh]_4	Integrated active power (regeneration), Circuit 1-4	Wh			
	WQ+_INTVL[varh]_1 to WQ+_INTVL[varh]_4	Integrated reactive power (lag), Circuit 1-4	varh			
	WQINTVL[varh]_1 to WQINTVL[varh]_4	Integrated reactive power (lead), Circuit 1-4	varh			
	Average value within interval (demand value)					
	P_DEM[W]_1 to P_DEM[W]_4	Average value within time Active power (Consumption), Circuit 1-4	W			
	Q_DEM[var]_1 to Q_DEM[var]_4	Average value within time Reactive power (LAG), Circuit 1-4	var			
	PF_DEM_1 to PF_DEM_4	Average value within time Power factor, Circuit 1-4				
		P_DEM				
		$\sqrt{P_DEM^2+Q_DEM^2}$ *1				
	Maximum demand value during time-series measurement					
	P_DEM_MAX[W]_1 to P_DEM_MAX[W]_4	Maximum demand value, Active power, , Circuit 1-4	W			
	P_DEM_MAX DATE_1 to P_DEM_MAX DATE_4	Date of occurrence of maxi- mum demand yyyy/m/d , Circuit 1-4				
	P_DEM_MAX TIME_1 to P_DEM_MAX TIME_4	Time of occurrence of maxi- mum demand h:mm:ss, Circuit 1-4				

*1: If the regeneration power has only occurred during the interval, $\mbox{P}_{\mbox{DEM}}=0$ and $\mbox{PF}_{\mbox{DEM}}=1.$

- "INST" in the header will be replaced by "AVE" for the average-value data.
- "INST" in the header will be replaced by "MAX" for the maximum-value data.
- "INST" in the header will be replaced by "MIN" for the minimum-value data.

Instantaneous-Value Data (Harmonic Measurement)

Classification	Data Header	Contents	Unit
Harmonic Level	U1(n)_INST[V]	nth harmonic voltage (U1) RMS	V
	U2(n)_INST[V]	nth harmonic voltage (U2) RMS	V
	U3(n)_INST[V]	nth harmonic voltage (U3) RMS	V
	I1(n)_INST[A]_1 to I1(n)_INST[A]_4	nth harmonic current (I1) RMS Circuit 1-4	A
	I2(n)_INST[A]_1 to I2(n)_INST[A]_2	nth harmonic current (I2) RMS Circuits 1 to 2	A
	I3(n)_INST[A]_1 to I3(n)_INST[A]_2	nth harmonic current (I3) RMS Circuits 1 to 2	A
	I4(n)_INST[A]_1	nth harmonic current (I4) RMS	A
	P(n)_INST[W]_1 to P(n)_INST[W]_4	nth harmonic power Circuits 1 to 4	W
Harmonic Percentage	U1(n)_INST[%]	nth harmonic voltage (U1) Content	%
Content	U2(n)_INST[%]	nth harmonic voltage (U2) Content	%
	U3(n)_INST[%]	nth harmonic voltage (U3) Content	%
	11(n)_INST[%]_1 to 11(n)_INST[%]_4	nth harmonic current (I1) Content, Circuits 1 to 4	%
	I2(n)_INST[%]_1 to I2(n)_INST[%]_2	nth harmonic current (I2) Content, Circuit 1-2	%
	I3(n)_INST[%]_1 to I3(n)_INST[%]_2	nth harmonic current (I3) Content Circuit 1-2	%
	I4(n)_INST[%]_1	nth harmonic current (I4) Content	%
	P(n)_INST[%]_1 to P(n)_INST[%]_4	nth harmonic power Content Circuits 1 to 4	%
Harmonic Phase Angles	U1deg(n)_INST[deg]	nth harmonic voltage (U1) Phase angle	deg
	U2deg(n)_INST[deg]	nth harmonic voltage (U2) Phase angle	deg
	U3deg(n)_INST[deg]	nth harmonic voltage (U3) Phase angle	deg
	I1deg(n)_INST[deg]_1 to I1deg(n)_INST[deg]_4	nth harmonic current (I1) Phase angle, Circuits 1 to 4	deg
	I2deg(n)_INST[deg]_1 to I2deg(n)_INST[deg]_2	nth harmonic current (I2) Phase angle, Circuit 1-2	deg
	I3deg(n)_INST[deg]_1 to I3deg(n)_INST[deg]_2	nth harmonic current (I3) Phase angle, Circuit 1-2	deg
	I4deg(n)_INST[deg]_1	nth harmonic current (I4) Phase angle	deg
	Pdeg(n)_INST[deg]_1 to Pdeg(n)_INST[deg]_4	nth harmonic power Phase angle, Circuits 1 to 4	deg


Classification	Data Header	Contents	Unit
Total Value	TOTAL_U1_INST[V]	Total voltage (U1) (1st to 40th)	V
	TOTAL_U2_INST[V]	Total voltage (U2) (1st to 40th)	V
	TOTAL_U3_INST[V]	Total voltage (U3) (1st to 40th)	V
	TOTAL_I1_INST[A]_1 to TOTAL_I1_INST[A]_4	Total current (I1) (1st to 40th), Circuits 1 to 4	A
	TOTAL_I2_INST[A]_1 to TOTAL_I2_INST[A]_2	Total current (I2) (1st to 40th), Circuit 1-2	A
	TOTAL_I3_INST[A]_1 to TOTAL_I3_INST[A]_2	Total current (I3) (1st to 40th), Circuit 1-2	A
	TOTAL_I4_INST[A]_1	Total current (I4) (1st to 40th)	A
	TOTAL_P_INST[W]_1 to TOTAL_P_INST[W]_4	Total power (1st to 40th) Circuits 1 to 4	W
THD-F (Selected)	THDF_U1_INST[%]	Voltage (U1) Total harmonic distortion (THD-F)	%
	THDF_U2_INST[%]	Voltage (U2) Total harmonic distortion (THD-F)	%
	THDF_U3_INST[%]	Voltage (U3) Total harmonic distortion (THD-F)	%
	THDF_I1_INST[%]_1 to THDF_I1_INST[%]_4	Current (I1) Total harmonic dis- tortion (THD-F) Circuits 1 to 4	%
	THDF_I2_INST[%]_1 to THDF_I2_INST[%]_2	Current (I2) Total harmonic dis- tortion (THD-F), Circuit 1-2	%
	THDF_I3_INST[%]_1 to THDF_I3_INST[%]_2	Current (I3) Total harmonic dis- tortion (THD-F), Circuit 1-2	
	THDF_I4_INST[%]_1	Current (I4) Total harmonic dis- tortion (THD-F)	%
THD-R (Selected)	THDR_U1_INST[%]	Voltage (U1) Total harmonic distortion (THD-R)	%
	THDR_U2_INST[%]	Voltage (U2) Total harmonic distortion (THD-R)	%
	THDR_U3_INST[%]	Voltage (U3) Total harmonic distortion (THD-R)	
	THDR_I1_INST[%]_1 to THDR_I1_INST[%]_4	Current (I1) Total harmonic dis- tortion (THD-R) Circuits 1 to 4	%
	THDR_I2_INST[%]_1 to THDR_I2_INST[%]_2	Current (I2) Total harmonic dis- tortion (THD-R), Circuit 1-2	%
	THDR_I3_INST[%]_1 to THDR_I3_INST[%]_2	Current (I3) Total harmonic dis- tortion (THD-R), Circuit 1-2	%
	THDR_I4_INST[%]_1	Current (I4) Total harmonic dis- tortion (THD-R)	%

- "n" represents the harmonic orders (01 to 40). Harmonic measurement data is added after normal measurement data.
 - "INST" in the header will be replaced by "AVE" for the averagevalue data.
 - "INST" in the header will be replaced by "MAX" for the maximum-value data.
 - "INST" in the header will be replaced by "MIN" for the minimum-value data.

The harmonic voltage phase angle and harmonic current phase angle are the standard for the PLL source phase (for input based on PLL when U1 is selected on this device) fundamental wave component.

The differences in phase of each harmonic order component and the phase of the fundamental wave component is expressed as an angle (°) and - indicates a LAG, whereas + indicates a LEAD. The phase angle of harmonic power is expressed by the power factor of each order of harmonic converted into an angle (°). When the harmonic-power phase angle is between -90° and +90°, the order of harmonic is flowing in toward the load (inflow). When the phase angle is between +90° and +180° or between -180° and -90°, that order of harmonic is flowing out from the load (outflow).

The arithmetic expressions for the harmonic-power phase angle vary depending on whether the reactive-power-meter method is ON or OFF.

Reactive-Power-Meter Method ON

Harmonic-power phase angle

$$\phi = \tan^{-1} \frac{Q}{P} [^{\circ}]$$

Both active power and reactive power have polarities, and the results are expressed by "0° to $\pm 180^{\circ}$ ". This enables identification of inflow and outflow and lag (-) and lead (+).

Reactive-Power-Meter Method OFF

Harmonic-power phase angle

$$\phi = \cos^{-1} \frac{P}{S} [^{\circ}]$$

Active power has polarities, but apparent power does not. The results are expressed by "0° to +180°". Identification of inflow and outflow is possible, but that of lag (-) and lead (+) is not. Due to the difference in arithmetic expression, the harmonic-power phase angle may differ if the three-phase load is unbalanced.

Output Data

How to calculate the average value. (AVE)

The average values of voltage, current, active power, reactive power, apparent power, power factor, and frequency are calculated by the following formulas.

Voltage

$$U_AVE = \frac{1}{N} \sum_{n=0}^{N-1} Un$$

The voltage RMS values for every one cycle are averaged within the interval period.

Current

$$I_AVE = \frac{1}{N} \sum_{n=0}^{N-1} In$$

The current RMS values for every one cycle are averaged within the interval period.

Active Power

$$P_AVE = \frac{1}{N} \sum_{n=0}^{N-1} Pn$$

The active power values for every one cycle are averaged within the interval period. (including the polarity sign)

Reactive Power

$$Q_AVE = si \frac{1}{N} \sum_{n=0}^{N-1} Q_n$$

The absolute values of reactive power for every one cycle are averaged within the interval period.

NOTE

When the reactive-power-meter method is OFF(not to be used), there is no polarity sign to reactive power value.

Apparent Power

$$S_AVE = \frac{1}{N} \sum_{n=0}^{N-1} Sn$$

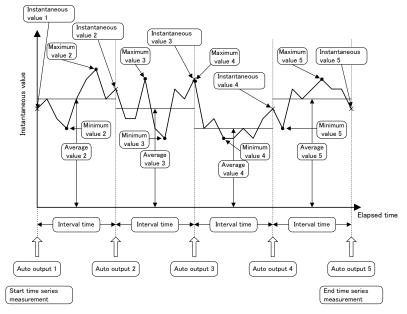
The apparent power values for every one cycle are averaged within the interval period.

204

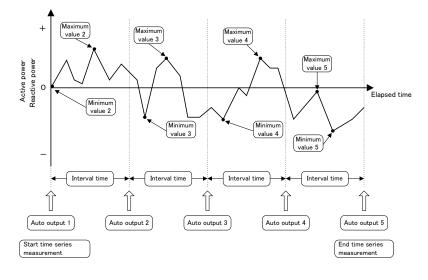
Power Factor

$$PF_AVE = si \frac{1}{N} \sum_{n=0}^{N-1} |PFn|$$

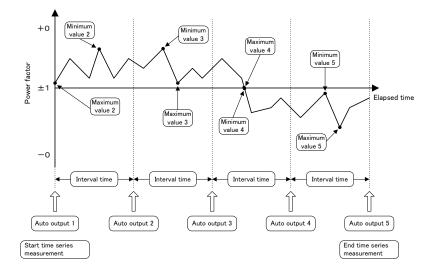
The absolute values of power factor for every one cycle are averaged within the interval period.


Frequency

$$F_AVE = \frac{1}{N} \sum_{n=0}^{N-1} F_n$$


The frequency values for every one cycle are averaged within the interval period.

- *N* : The number of the data in the interval period
- Un : The voltage RMS value of every one cycle
- *In* : The current RMS value of every one cycle
- *Pn* : The active power value of every one cycle
- Qn : The reactive power value of every one cycle
- Sn : The apparent power value of every one cycle
- PFn : The power factor value of every one cycle
- *Fn* : The frequency value of every one cycle
- si : Polarity of lead or lag (lag: no indication, lead: -) By assuming when $Qn \ge 0$, Q; or when Qn < 0, Q; No indication for *si* when $\Sigma Q \ge \Sigma |Q'|$ in the interval period. "-" is indicated for *si* when $\Sigma Q < \Sigma |Q'|$.


Data output timing of the instantaneous, average, maximum, and minimum values

The maximum and minumum values of active power and reactive power

The maximum and minimum values of power factor

The display shows the average, maximum, and minimum values of the measurements taken up to the current time from the start of time-series measurement.

~~~~

# **Error Messages**

| Message                                                                                       | Remedy                                                                 |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| During the time-series measurement<br>or waiting mode, this setting cannot<br>be changed.     | Change the settings after finishing the time-<br>series measurement.   |
| During the time-series measurement<br>or waiting mode, this function cannot<br>be used.       | Change the settings after finishing the time-<br>series measurement.   |
| During the time-series measurement<br>or waiting mode, this operation<br>cannot be performed. | Perform the operation after finishing the time-<br>series measurement. |
| START TIME has already passed.<br>Start JUST TIME.                                            | Set the start time after the current time.                             |
| During HOLD, this setting cannot be changed.                                                  | Release HOLD to change settings.                                       |

These messages disappear after a few seconds.

| Message                                                   | Remedy                                                                                                                   |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| This key cannot be selected during HOLD.                  | Release HOLD.                                                                                                            |
|                                                           | Set the interval time to 1 minute or longer for harmonic data output and printer output.                                 |
| Harmonic data output and printer output are not possible. | Set the interval time to 1 minute or longer for harmonic data output and printer output.                                 |
| Before starting measurement, format the PC CARD.          | Format the PC CARD.                                                                                                      |
|                                                           | When a short-term interval is used, the<br>instantaneous values of normal measurement<br>are saved in the binary format. |
| No PC CARD.                                               | Insert the PC CARD.                                                                                                      |
| PC CARD is not compatible.                                | Use optional PC CARD of HIOKI.                                                                                           |
| Write Protected.                                          | Release the write protection of this media.                                                                              |
| Max. number of files exceeded.                            | The number of files exceeds the maximum<br>writable file number. Delete the files, or format<br>the media.               |
| Disk full.                                                | Delete the files, or format the media.                                                                                   |
| PC CARD is not formatted.                                 | Format the PC CARD.                                                                                                      |
| Same name file is already exists.                         | Rename the file.                                                                                                         |
| Copy failed.                                              | Format the PC CARD or exchange the PC CARD.                                                                              |
| Delete failed.                                            | Execute again.                                                                                                           |
| Initializing of internal memory has failed.               | Execute again.                                                                                                           |
| Selected file is not a setting file.                      | Select a setting file.                                                                                                   |
|                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                    |

These messages can be cleared by pressing any key.



| Message                                     | Remedy                                                                                                                                                                                                                      |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PC card format failed.                      | Confirm the PC CARD is properly inserted.                                                                                                                                                                                   |
| Output to internal memory.                  | The data is saved in the internal memory, if the<br>PC CARD is selected as a storage media but a<br>PC CARD is not properly inserted, or if the PC<br>CARD is full. Insert the PC CARD properly or<br>exchange the PC CARD. |
| Data could not be saved to internal memory. | Format the internal memory.                                                                                                                                                                                                 |
| File error.                                 | Format the PC CARD and internal memory, or use the new PC CARD.                                                                                                                                                             |
| Access failed                               | Format the PC CARD and internal memory, or<br>use the new PC CARD. When formatting the PC<br>CARD on a PC, use the FAT-16 format.                                                                                           |
| Select a file.                              | No file is selected. Select a file.                                                                                                                                                                                         |
| Some files have not been deleted.           | The files are broken. Format the PC CARD.                                                                                                                                                                                   |
| Back up failed.                             | Format the internal memory.                                                                                                                                                                                                 |
| Scaling error.                              | Change the VT(PT) or CT ratio setting.                                                                                                                                                                                      |

These messages can be cleared by pressing any key.

# Index

## **Numerics**

| 2-power-meter method |  |
|----------------------|--|
|                      |  |

## Α

| Accuracy by Clamp- | On Sensor            |
|--------------------|----------------------|
|                    | . 184, 185, 186, 187 |
| Automatic Output   |                      |
| Automatic Storage  |                      |
| Average            |                      |
| average            |                      |

## В

| Backlight        | 89    |
|------------------|-------|
| Backup data file | . 115 |
| BAUD RATE        | 88    |
| Beep Sound       | 90    |

## С

| Clamp-On Sensor              |            |
|------------------------------|------------|
| Computer                     |            |
| Connection                   | 35         |
| Contrast Control             | 20         |
| Copying                      | 128        |
| Copying a Screen             | 144        |
| Copying Screen               |            |
| СТ                           | 66         |
| Current flow direction arrow |            |
| Current Input terminals      | 20         |
| Current Range                | 51, 54, 65 |

## D

| D/A Output Terminal          | 21, 157             |
|------------------------------|---------------------|
| Data Output Setting Screen   | 68                  |
| Deleting a File              | 126                 |
| Demand                       | 81, 104             |
| Display                      | .113, 114           |
| Display Average Times        | 62                  |
| Dynamic range overflow warni | ing <mark>54</mark> |

## Ε

External Input/Output Terminal 21, 151

## F

| File                      | 119          |
|---------------------------|--------------|
| File Name                 | 76           |
| file screen               |              |
| Files                     | 115          |
| FLOW CONTROL              |              |
| Formatting                | 120, 121     |
| Formulae                  |              |
| Functions of the External | Input/Output |
| Terminal                  | 152          |

## Н

| Harmonic                       | 82 105    |
|--------------------------------|-----------|
|                                |           |
| Harmonic content               | .106, 109 |
| Harmonic Graph                 | 108       |
| Harmonic level                 | .106, 109 |
| Harmonic List                  | 105       |
| Harmonic Phase Angles          | 201       |
| Harmonic-power phase angle     | 106, 109  |
| Harmonic-voltage (current) pha | ase angle |
|                                | .106, 109 |
| Headers                        | 197       |
| Holding                        | 114       |
|                                |           |

# ii

#### L

| 91    |
|-------|
| 24    |
| 31    |
| 95    |
| 97    |
| 0, 82 |
| , 103 |
| 161   |
| 120   |
| , 131 |
|       |

## Κ

| EY LOCK |
|---------|
|---------|

## L

| Language               |  |
|------------------------|--|
| LCD                    |  |
| Loading a Setting File |  |

## Μ

| Maximum                    | 100    |
|----------------------------|--------|
| maximum                    | 80, 82 |
| Measurement                | 69     |
| Measurement data file      | 115    |
| Measurement Range          | 53     |
| measurement screen         | 22     |
| Measurement Setting Screen | 56     |
| measurement start          | 69     |
| measurement stop           | 71     |
| Minimum Values             | 100    |
| minimum values             | 80, 82 |
| multiple circuits          |        |
| Multiple-Circuit           |        |
|                            |        |

## Ν

| Neutral Current       | . 44 |
|-----------------------|------|
| number of output data | .79  |

## 0

| Order           | .84, 87 |
|-----------------|---------|
| Output Waveform | 164     |
| Over range      | 54      |

## Ρ

| PC Card                  | .21, 117, 121 |
|--------------------------|---------------|
| PC card                  | 116           |
| PLL                      | 59            |
| Power                    |               |
| Power Cord               |               |
| Power Outage             |               |
| Power Range Configuratio | n184,185,     |
| 186,                     |               |
| POWER switch             | 20, 33        |
| Printer                  | 137           |
| PT                       | 64            |
|                          |               |

## R

| Reactive-power-meter method . | 61      |
|-------------------------------|---------|
| Response                      | 162     |
| RS-232C21, 77, 88, 1          | 40, 146 |

# S

| Save/Print Items Setting Screen79 |
|-----------------------------------|
| Saving                            |
| Saving a Setting File             |
| Saving Data                       |
| Saving Measurement Data Manually  |
| 133                               |
| Screen copy file115               |
| Screen is to be Copied78          |
| Sensor                            |
| Setting file115                   |
| Setting Screen55                  |
| setting screen                    |
| start time                        |
| Status                            |
| Stop Time                         |
| Storable Time                     |

| System Reset          | 191  |
|-----------------------|------|
| System Setting Screen | . 85 |

# T

| TERMINATOR                | 88 |
|---------------------------|----|
| THD                       | 86 |
| THD-F                     | 86 |
| THD-R                     | 86 |
| TIMER                     | 71 |
| Total Harmonic Distortion | 86 |

## V

| Version                 | 94         |
|-------------------------|------------|
| Voltage Cords           |            |
| Voltage cords           |            |
| Voltage Input terminals |            |
| Voltage Range           | 50, 53, 63 |
| VT                      | 64         |

## W

| Waveform           |     |
|--------------------|-----|
| Waveform data file | 115 |
| WIRING CHECK       |     |
| Wiring Diagram     |     |
| Wiring Method      | 57  |

# Z

| Zoom Screen |  | 1 | 1 | 3 | 3 |
|-------------|--|---|---|---|---|
|-------------|--|---|---|---|---|

# ΗΙΟΚΙ

### **DECLARATION OF CONFORMITY**

| Manufacturer's Name:        | HIOKI E.E. CORPORATION                                                          |
|-----------------------------|---------------------------------------------------------------------------------|
| Manufacturer's Address:     | 81 Koizumi, Ueda, Nagano 386-1192, Japan                                        |
| Product Name:               | CLAMP ON POWER HITESTER                                                         |
| Model Number:<br>Accessory: | 3169-20, 3169-21<br>9438-03 VOLTAGE CORD<br>9441 CONNECTION CABLE (for 3169-21) |
| Option:                     | 9440 CONNECTION CABLE<br>9721 RS-232C CABLE<br>9612 RS-232C CABLE               |

The above mentioned products conform to the following product specifications:

| Safety: | EN61010-1:2001                                    |
|---------|---------------------------------------------------|
|         | EN61010-031:2002                                  |
| EMC:    | EN61326:1997+A1:1998+A2:2001+A3:2003              |
|         | ClassA equipment                                  |
|         | Equipment intended for use in industrial location |
|         | EN61000-3-2:2000                                  |
|         | EN61000-3-3:1995+A1:2001                          |

Supplementary Information:

The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC

#### HIOKI E.E. CORPORATION

T. Goshiike Tatsuyoshi Yoshiike

President

3169A999-03

5 September 2006

#### HIOKI 3169-20/21 CLAMP ON POWER HITESTER

Instruction Manual

Publication date: September 2006 Revised edition 3

Edited and published by HIOKI E.E. CORPORATION

Technical Support Section

All inquiries to International Sales and Marketing Department

81 Koizumi, Ueda, Nagano, 386-1192, Japan

TEL: +81-268-28-0562 / FAX: +81-268-28-0568

E-mail: os-com@hioki.co.jp

URL http://www.hioki.co.jp/

Printed in Japan 3169A981-03

- All reasonable care has been taken in the production of this manual, but if you find any points which are unclear or in error, please contact your supplier or the International Sales and Marketing Department at HIOKI headquarters.
- In the interests of product development, the contents of this manual are subject to revision without prior notice.
- Unauthorized reproduction or copying of this manual is prohibited.



#### HEAD OFFICE

81 Koizumi, Ueda, Nagano 386-1192, Japan TEL +81-268-28-0562 / FAX +81-268-28-0568 E-mail: os-com@hioki.co.jp / URL http://www.hioki.co.jp/

#### **HIOKI USA CORPORATION**

6 Corporate Drive, Cranbury, NJ 08512, USA TEL +1-609-409-9109 / FAX +1-609-409-9108

3169A981-03 06-09H

Printed on recycled paper